
TVCG, FEBRUARY 2023 1

A Qualitative Interview Study of Distributed
Tracing Visualisation: A Characterisation of

Challenges and Opportunities
Thomas Davidson, Student Member, IEEE, Emily Wall and Jonathan Mace

Abstract—Distributed tracing tools have emerged in recent years to enable operators of modern internet applications to troubleshoot
cross-component problems in deployed applications. Due to the rich, detailed diagnostic data captured by distributed tracing tools,
effectively presenting this data is important. However, use of visualisation to enable sensemaking of this complex data in distributed
tracing tools has received relatively little attention. Consequently, operators struggle to make effective use of existing tools. In this paper
we present the first characterisation of distributed tracing visualisation through a qualitative interview study with six practitioners from two
large internet companies. Across two rounds of 1-on-1 interviews we use grounded theory coding to establish users, extract concrete use
cases and identify shortcomings of existing distributed tracing tools. We derive guidelines for development of future distributed tracing
tools and expose several open research problems that have wide reaching implications for visualisation research and other domains.

Index Terms—Visualisation, Distributed Tracing, Systems.

✦

1 INTRODUCTION

M ODERN internet applications such as social networks and e-
commerce sites are large-scale and distributed; their applica-

tion logic comprises many inter-operating services deployed across
different physical machines, all communicating over the network.
The term microservices is often used to denote this architectural
style of building applications. After these applications are deployed,
developers and operators can make use of Distributed Tracing tools
(DT) to observe, record, and troubleshoot the application’s ongoing
end-to-end behavior [1]. Distributed tracing emerged over the past
decade in tandem with modern distributed application designs.
Today, distributed tracing is gaining maturity, with recent open-
source frameworks [2], [3], interfaces [4], standardisation [5] and
bespoke solutions from startup companies [6], [7].

DT tools record rich, detailed execution traces of requests
executed by the application – e.g. search queries, web page loads,
or other top-level user interactions. Each trace portrays the end-to-
end execution of a request, combining data from many services and
machines. A single trace can be complex, since modern applications
are large in scale and distributed across many servers, with dynamic
topologies. Each request will involve many service calls across
many machines; e.g., loading the home feed of a social media
application will entail an execution spanning social graph databases,
user and authentication services, advertising backends, and many
more [8]. As such, effective use of this large and complex data
presents a number of unique challenges in visualisation research.

Application developers, system operators, and site reliabil-
ity engineers use DT to understand and troubleshoot deployed
applications. They do so by querying and visually inspecting
large, continually-generated datasets of traces [9]; system operators
thus need effective visualisations to efficiently troubleshoot large
and complex trace data. However, DT research to date has

• T. Davidson and J. Mace are with the Max Planck Institute for Software
Systems, University of Saarland, Saarbrücken, Germany
E-mail: tdavidso@mpi-sws.org

• E. Wall is with Emory University, Atlanta, GA, USA

focused on the technical infrastructure for capturing trace data
with relatively little focus on the end-user requirements of DT.
Visualisations present in today’s DT tools and published research
literature were often developed for convenience and it is difficult
to ascertain which, if any, aspects of their design were user-driven.
Simultaneously, users of existing open-source and proprietary DT
tools often struggle to work effectively and cite problems with
usability or the design of the data visualisation itself (cf. §2.3). We
posit that there is a critical missing piece hindering adoption of
existing solutions: namely, foundational work toward understanding
the challenges and potential benefits in the relatively nascent use
of visualisation solutions in distributed tracing.

In this paper we present a qualitative interview study with six
practitioners of DT across two large internet companies. Our study
includes prominent users and maintainers of multiple different DT
tools, both open-source and bespoke. We conducted two rounds of
1-on-1 interviews, establishing the setting of our users, discussing
the problem area, and observing their interactions with existing
tooling. From these interviews, our qualitative analysis identifies
key use cases and challenges for DT tools. Finally, we synthesise
eight guidelines for the design of DT. These outcomes provide
the first systematic characterisation of this rich problem area for
visualisation research. The guidelines (i) provide a framework for
future development of DT analysis tools; (ii) identify opportunities
for applying established techniques from visualisation literature to
DT; and (iii) expose open problem areas, beyond the domain of
DT, which visualisation could play a key role in solving.

2 BACKGROUND

2.1 Motivation
DT is primarily used to monitor and troubleshoot a deployed
application’s runtime behavior. For example, a system operator
might ask questions like “why was this search query slow?”
Answering such questions is deceptively difficult because modern
applications are typically built as distributed systems of inter-
operating microservices. One request (e.g., the search query) has

TVCG, FEBRUARY 2023 2

Fig. 1. Trace visualisation from Jaeger [2], an open-source DT tool. The
trace depicts a ComposePost API call to the DeathStar social network
application [8], a small-scale open-source microservice benchmark.

an end-to-end execution that spans many different services and
machines. Each service is only responsible for a small piece of
request logic, and a problem’s root cause (e.g. an overloaded
backend database) could be in any of those services or machines.

DT records end-to-end data about request executions. DT is
related to traditional event logging techniques, but with three
important distinctions: (1) it coherently collects and combines
all events logged by a request across all machines visited; (2) it
distinguishes and separates events generated by different concurrent
requests executing at the same time; and (3) it explicitly records the
causal ordering of events. For each traced request, DT ultimately
captures a richly annotated graph of events spanning all visited
machines. DT is useful for many troubleshooting tasks that are
otherwise difficult or impossible; users can inspect and query traces
to observe the full end-to-end flow of any request’s execution.

Human users (application developers and operators) consume
trace data via frontend visualisations and UIs. However, since
DT is still nascent, research has not focused on user-driven
development and design. Instead, prior work from industry [9],
[10], academia [11], and open-source [2], [4] has, necessarily,
first tackled the technical challenges of recording and constructing
traces from data that is scattered and interleaved across many
machines. Visualisation has begun to receive attention in recent
work, albeit still with a focus on tracing mechanisms and absent
of user-informed design aspects [12]. Outside of academia, several
recent DT startups have extended open-source solutions such as
OpenTelemetry [4] and Jaeger [2] but we find no published design
study work or novel visualisation approaches.

To date, there exists no reference point for user requirements
or preferences in DT. Our goal in this work is therefore to provide
scaffolding to inform future visualisation solutions by providing a
rigorous accounting of users, tasks, and challenges involved in DT,
as well as opportunities for visualisation innovation.

2.2 Distributed Tracing Overview

We introduce the key concepts of DT with reference to Fig. 1,
which illustrates a “swimlane” visualisation ubiquitous in DT.

Where does trace data come from? When a developer wishes
to use DT in their application, they link a DT library and use an
application-level tracing API to record information. The DT library
will record and transmit the logged events; DT backends will
receive and combine events into full request traces, and store them
in a database. Developers and system operators can subsequently
access traces via the web UI of the framework.

Trace. One trace represents one end-to-end request. Fig. 1 illus-
trates a trace of a “ComposePost” request in the DeathStar social
network application [8], a small-scale open-source microservice
benchmark. Each trace is a directed, acyclic graph (DAG) of spans
(vertices) and relationships (edges).

Spans. Spans are the building blocks of a trace: a span represents
a segment of processing that occurred, such as a single function
execution, a single thread execution, or a remote procedure call
(RPC). The granularity of a span is chosen by the software devel-
oper when using the tracing API. Spans include timing information,
and the developer can attach arbitrary key-value attributes using the
tracing API (e.g. “span name:UploadMedia”). The horizontal
bars in Fig. 1 depict spans, their latency, and the “span name”
attribute. Developers can annotate spans with timestamped log
messages (not depicted in Fig. 1). The information in a span is
developer-provided and thus varies between different applications
or even services within the same application.

Relationships. Traces also capture relationships between spans,
which typically correspond to inter-thread or inter-service commu-
nication. For example, RPC communication is recorded as a parent-
child relationship between the caller and callee spans. Fig. 1 depicts
parent-child relationships using indentation and nesting. Spans
can have arbitrary relationships to other spans, but parent-child
relationships are most common in RPC-based applications. Like
spans, relationships can have additional attributes and annotations.

2.3 Visualisation

The following descriptions do not refer to a single visualisation,
but are common features across most state-of-the-art solutions.
Accessing Traces. Traces are hosted in a backend database and
exposed via a web interface. Users (i.e., developers and operators)
can find traces by searching on high-level, common attributes such
as a specific service, API call type, or time window. From the list of
matches, users can select an individual trace for closer inspection.

Swimlane View. The swimlane – also referred to as waterfall –
visualisation is the canonical way to visualise individual traces
used by prior DT frameworks [9], [10]. It enables users to
manually investigate an individual request in detail as part of
a troubleshooting task. Fig. 1 shows a representative example of
a trace visualisation in Jaeger, the state-of-the-art open-source
DT framework. The trace depicts a timeline of a single request,
with spans depicted horizontally and sorted vertically. Some
visualisations explicitly depict relationships as lines between
spans [13]; however in Fig. 1 relationships are implicit based
on vertical ordering and indentation of span names. Additional
information such as annotations and key-value attributes of spans
are typically available by clicking on a span (through a dialog box
or side panel). An individual trace can be large (thousands of spans;
several MB in size) so there is typically some form of pan-zoom
navigation. Although swimlane visualisations are widespread in
practice, there is no known rigorous justification for their design,
and users often encounter difficulties, e.g. missing critical features,
inconsistencies in presentation, time-consuming and confusing
manual steps, and more [14], [15].

Alternate Views. Some DT tools do offer alternatives to the
swimlane view, such as Jaeger’s service dependency view, and
many tools offer multiple subtly different approaches to view the
same trace, such as SkyWalking’s List, Tree, and Table views.
However, every tool that we examined (whose capabilities are
covered in Table1) used the traditional swimlane view. From our
interviews and analysis of features, the swimlane view appears to
be the most pervasive and so we focus on this.

Aggregate visualisations. DT can capture large volumes of traces:
Facebook reports over 1 billion traces per day [9]. Overall, the

TVCG, FEBRUARY 2023 3

collection of request traces represents the system’s behavior as a
whole. Some recent systems provide visualisations for aggregate
analysis. For example, Canopy extracts per-trace metrics to a
tabular form, which operators can then query using standard time-
series database interfaces [9] (e.g. “what is the latency distribution
of the url-shorten-service service”). Jaeger provides an
experimental trace comparison feature to compare the structure of
a trace to a set of other traces [16]. Like the swimlane view, design
choices and alternatives are not discussed in these prior works.

2.4 Related Work
DT shares similarities with program and software tracing that
have also utilised visualisation [17], [18] including work in single-
machine application tracing which utilises a similar swim lane
approach [19]. However, several aspects of DT make it significantly
different from these approaches:
Distributed. DT combines trace events from multiple machines,
must correctly distinguish concurrent requests, and must coherently
order events. Existing single-machine tracing techniques do not
trivially extend to a distributed setting.
Ad-hoc Data. DT data is generated at the application level and
there are few guarantees about the structure, contents, or detail of
trace data. Different developers and application components can
choose to record different things.
No model or schema. The application’s workload and topology
are dynamic and change often. The DT user often does not have
any access to source code or data schema, and there is no reliable
model of the system’s components and dependencies. Conversely,
traditional approaches deal with individual runs of binaries in
offline settings, often with access to source code.
Datasets of traces. DT records many traces of many requests;
by contrast traditional tracing approaches are concerned with
individual program runs in isolation. DT aims to connect and
compare individual trace executions to this aggregate context.
Online setting. DT targets large always-on systems; traces are
continually generated; and users care about trends and changes over
time. By contrast traditional approaches typically trace individual
runs of binaries in an offline setting.
Timing. With no global clock, DT orders events using the
“happens-before” relation [20]. Single program traces are less
ambiguous due to accurate timing from a shared clock.
Use Cases. Survey work from 2014 found that traditional program
tracing use cases could be simplified to: global comprehension,
problem detection, and diagnosis and attribution [21]. These are
aligned to use cases we establish later (§5) but have important
differences. Single program tracing is concerned with drilling
down to the instruction or function level, and debugging programs
in standalone environments. DT has a much coarser granularity and
is concerned with the macro level such as identifying the service
where a problem is occurring and contacting the service owner. DT
is also used much more proactively to pre-empt bottlenecks and
mitigate them, rather than reacting to exhibited problems.

Prior works often have a specific use case focus, e.g. detecting
latency [22] or debugging [18]. Conversely, our work lays foun-
dations to establish the problem area of DT, why visualisation is
necessary for it, why existing solutions fail to satisfy the use cases,
and steps that future work can take to mitigate this.

Despite these differences, work in DT visualisation can still be
informed by this work, e.g., in areas such as visualising parallel

traces which occur concurrently [22] and the use of adaptive
timescales [17]. Most work in this area introduces solutions
and evaluates their efficacy [22]; however, what this prior work
collectively lacks is a systematic and in-depth understanding
of the fundamental nature of the problems. Therefore, instead
of introducing another solution for DT, we first provide a rich
characterisation of the domain and associated problems.

Performance visualisations are also widely used in other High
Performance Computing domains [23], with some work focusing
explicitly on user requirements [24]. Other performance and
troubleshooting scenarios have considered visualisations such as
flame graphs [25] for resource consumption. Dashboards for system
monitoring [26] have also utilised visualisation in detecting and
analysing anomalous performance in cloud systems. Contributions
from these areas may be relevant, but there are fundamental
differences and users have different tasks and goals. A goal of
our study is to solidify these goals in the DT domain and extract a
characterisation highlighting the unique challenges DT presents.

Throughout this paper we identify several avenues of visuali-
sation research that can be applied to DT. This includes work on
optimal graphical encoding channels for various data types [27];
visualisation design mantras such as “overview first, zoom and filter,
then details on demand” [28] or focus+context [29]; evaluation
methodologies [30], [31] ; and lessons learned from applications for
program understanding and debugging [32]. Future work can also
be influenced by work investigating the use of guidance in visual
analytics [33] and the difficulty of designing visualisations for
specialist domains [34] – specifically how designers can collaborate
with domain experts to efficiently design practical and useful tools.

3 INTERVIEW STUDY

Qualitative interview studies are useful for understanding and char-
acterising a problem area, especially from an end-user perspective.
Interview studies have helped in advancing diverse fields such as
data journalism [35] and requirements engineering [36]. Adjacent
to DT, interview studies of data analysis tasks [37], [38] have
had wide-reaching impact on the subsequent development of data
analysis tools [39], [40] ; likewise studies of dashboard design [41],
[42] laid the foundations of later visualisation designs [43]. Corre-
spondingly, we hope to influence future work on DT visualisation,
as no prior characterisations exist of this problem area.

In this section, we describe a qualitative interview study
performed with six DT practitioners from two large internet
companies. Our goal is to characterise the problem area by: (a)
establishing the common user roles of DT visualisations (cf. §4); (b)
establishing typical use cases and workflows (cf. §5); (c) identifying
challenges with existing tooling and where it does not meet users’
needs (cf. §6); and (d) synthesising guidelines for the development
of future distributed tracing visualisation solutions (cf. §7).

3.1 Participants and Setting
DT is nascent, and consequently widespread adoption and under-
standing of DT analytics is still in its infancy. Yet, in order for
us to understand the existing problems, it is crucial to work with
highly experienced participants. We sought users with experience of
popular open source tooling. Furthermore, seeing how companies
adopted these open source solutions into bespoke visualisations
enabled us to learn from their approaches. The resulting pool of
potential participants was consequently small, when factoring in
our other inclusion criteria.

TVCG, FEBRUARY 2023 4

We used network and reputation-case selection [44] to contact
two large internet companies. One company exclusively used open
source solutions and the other had developed an in-house bespoke
DT solution over several years. Initially, we sought to recruit users
of DT solutions who were also involved in its maintenance: a
backend and frontend developer of the tracing systems at each
company. Taking inspiration from the winnow and cast stage
(solidifying collaborators and roles) of the design study framework
[45] we expanded this to include a user from each company
who exclusively consumed visualisations and was not involved
in maintenance. This resulted in a total of six participants (one
maintainer, developer, and user from each company) who each had
5+ years of experience with DT. The participants were:
P1 Technical lead overseeing DT projects at company A, includ-

ing backend and frontend development. Active maintainer of
a leading open source tracing solution.

P2 Technical lead of performance and observability visualisation
at company A, primarily focused on frontend development.

P3 Data scientist working on prelaunch product at company A,
daily workflow heavily involves DT.

P4 Visualisation designer on the performance team at company
B, focused on frontend development.

P5 Senior engineer responsible for DT infrastructure at com-
pany B, including backend and frontend development, and
maintainer of a leading open source tracing solution.

P6 Senior Software Reliability Engineer for major product at
company B, daily workflow significantly incorporates DT.

All interviews took place using a video conference system.
Where appropriate we asked participants to share their screens. All
participants spoke with us from a typical working location.

3.2 Method

We follow established guidelines for planning and executing
qualitative interview studies [44] and adopt approaches used for
interview studies in similar fields [37], [38]. We designed an
interview guide [44] to ensure each participant covered a core set
of questions; otherwise, interviews were semi-structured [46], [47]
to allow participants to highlight what they thought was important,
and to allow broad coverage of the problem area. The first round
aimed to characterise DT tools, users, and use cases. For the second
round we observed each participant using their existing tools and
asked for explanations of their workflows and to highlight problem
areas. Each interview lasted between 1 to 2 hours and was video
and audio recorded and transcribed by the lead author.

We applied a grounded theory approach [48] to extract salient
codes from each interview. The lead author then applied an open
coding approach to the interview transcriptions [49]. The codes
were iteratively reviewed by the second and third authors, and
collectively discussed until a consensus was reached and the
final codes were compiled. The lead author then applied affinity
diagramming to form broader categories of codes, collecting and
adapting the codes across all participants into coherent subsets.

To seek saturation of codes and mitigate the small size of
our user pool, we revisited several themes raised by specific
participants in subsequent interviews with the other interviewees.1

We repeatedly discussed and refined our categorisations and
classifications based on coding calibration techniques described in

1. We include anonymised supplementary material to further detail the coding
process and iterations

prior research [50]. After four iterations we reached a set of stable
codes for the users and use cases after our first set of interviews.

During the first interviews, some codes emerged relating to
tooling-specific commentary. As it was not the focus the saturation
of these was unclear. Therefore, during the second interview we
explored how users interacted with their existing tools, and the
problems that arose. Following this round we followed the same
coding methodology from round one and reached a set of stable
codes for existing challenges.

From these three sets of codes (users, use cases, and challenges),
we proceeded to identify areas for potential improvement where
challenges could be addressed. The lead author drafted broad areas
for improvement and after several iterations with co-authors we
arrived at a set of improvement areas which formed the basis of
our design guidelines. To ensure a comprehensive accounting of
our findings, we utilised a framework to map each improvement
areas to a challenge. We adapted the improvement areas to extract
eight guidelines for design which ultimately gave us full coverage
of our extracted challenges that users faced frequently.

4 USER ROLES

In the first interview round we asked our participants to classify the
user groups involved with DT. Participants consistently identified
two main groups: developers and consumers. Our participants P1,
P2, P4, and P5 represent this first group and participants P3 and P6
the latter. All 6 of the participants identified this divide.

Developers maintain the tools themselves and also frequently inter-
act with frontends. Developers subdivide into these three categories:
backend engineers, Software Development Kit (SDK) engineers,
and visualisation / frontend engineers. Backend engineers focus
on the implementation of the DT instrumentation. SDK engineers
were primarily considered to be responsible for backend focused
work, such as sampling policy. Visualisation and frontend engineers
develop the existing frontend tooling that the companies used, or
tweak open-source implementations. Developers have an in-depth
understanding of the functionalities and data available with DT, as
they are involved in implementing the tooling themselves.

Consumers make use of trace data for troubleshooting and analysis
tasks. Consumers primarily interact with the DT frontends and
do not require knowledge of DT internals. Consumers include
developers of individual services within an application; developers
responsible for the underlying infrastructure; and site reliability
engineers responsible for application reliability end-to-end. The
most notable finding concerning consumers was that they are
isolated from one-another. An organisation as a whole may have
many DT consumers, but in any given developer team there would
typically only be one engineer who was an expert in DT and would
use it extensively; other engineers on the team use it occasionally,
or not at all. We found that these expert DT consumers had minimal
communication across teams and as a result had little insight about
how other consumers were using the tools available.

5 USE CASES

We summarise the use cases in five main categories, plus a handful
of less common use cases that could not be clearly categorised.

Incident localisation. Troubleshooting arose as the most prevalent
use case from all interviews. Participants often described having
to localise incidents and using DT to narrow down where an
actual problem had occurred. The purpose of this localisation is

TVCG, FEBRUARY 2023 5

to identify the service containing the root cause, and by extension
the correct engineering team to contact – DT is not heavily used to
subsequently identify the location of errors in the code.
Application behaviour in aggregate. Every participant described
a workflow starting from aggregate metrics before narrowing down
to specific traces to inspect. Moreover, many investigations do not
involve interacting with individual trace visualisations in any form;
in this case users work only with recorded metrics and aggregated
data over sets of traces. Understanding latency distributions of
traces and spans emerged as a prevalent use case.
Proactive measures. DT data is heavily leveraged for proactive
measures such as resource and capacity planning. Some proactive
measures are necessary due to technical limitations of the tracing
system. For example, reactive troubleshooting is impractical if it
requires recording new information as it can take hours to days for
changes to be incorporated and new data ready to be queried.
Network connectivity. Users want to leverage the causal nature
of DT to understand the connectivity of services within their appli-
cation. Two specific use cases emerged. First, understanding how a
service connects to other services in its immediate neighbourhood –
who it calls and who calls it. Second, understanding the indirect
impact of service calls on downstream services and how upstream
services dictate the number of times their service was called.
Trace inspection and hypothesis validation and generation.
Users often seek exemplar traces for validating hypotheses. Typi-
cally, users arrive at individual traces only after utilising other tools
or manually querying trace data. Users generate their hypotheses
using these other tools then navigate to individual traces to validate
that hypothesis. This is a two-way process, with inspection often
leading to new hypotheses and revisiting of other tools. As part of
this workflow users commonly compare two or more traces.
Further specific use cases. Participants described a handful of
other use cases. One of significant note was the use of DT to
analyse timing and latency details more closely. This could involve
looking at latency distributions, but mainly using the richness of
DT data to see timing details per span (often manually querying
the data) and to troubleshoot when discrepancies in timings arose.

6 CHALLENGES

We describe the challenges that users experienced in five primary
categories that are labelled Challenge (C) 1 - 5 for future reference.
This list is not intended to be exhaustive, but rather give a sense of
(potentially overlapping) challenges that users experience.

6.1 C1: Mismatched Workflow
Individual trace visualisation is only one piece of the troubleshoot-
ing workflow. All participants described workflows beginning from
high level metrics and aggregated overview data (tabular datasets
derived from traces) and leading eventually to inspecting individual
traces of interest.

Investigative processes thus often span multiple UIs and tools
and feature repeated use of the same visualisations for different
source data. Currently, only a very narrow portion of a task may
be performed within a single visualisation or UI; users often
utilise multiple different UIs and different instances of specific
visualisations when performing an analysis.

“This tool is a remarkably good and dense visualisation
but it is at a certain high level of abstraction, so you’d
want to couple it together with other tools.” – P4

This is not a one-way workflow as often users need to traverse
back up the tree and move to other tools to continue their
investigations. Tasks often involved users forming and validating
hypotheses, and this necessarily requires a lot of exploration and
backtracking, both within and across tools.

Tools are myopic. Despite an ecosystem of tools and workflows
spanning multiple tools, by default each tool is presented as a stan-
dalone option to its users. Participants describe how visualisations
attempt to be ‘one size fits all’ solutions despite being rarely used
in this manner. This results in a disparate toolset and burdens users.

Linking between tools is not supported. Despite a common
progression from overview down to trace inspection, tools are not
coupled and must be manually accessed by users, navigating to the
relevant data from scratch each time. All participants expressed
a desire for linking between tools for more direct navigation and
frustration at siloed tools slowing down troubleshooting. In §8 we
discuss industry efforts to address myopic tools and their linking.

Missing broader context. Individual trace inspection is typically
just one step in a broader troubleshooting workflow. For example,
a user might inspect a trace to determine if it exemplifies some
performance anomaly; the broader context of what the anomaly
is derives from prior steps in the workflow. Participants described
how they do not gain significant benefit from any one tool or
visualisation in isolation. However, existing tools only present trace
data in a generic way, regardless of how or why a user arrived at
the tool. For example, observing an individual trace and its relative
timings is not valuable unless you know whether these timings are
slower or faster compared to the general corpus of traces.

6.2 C2: Excessive User Burden.
DT supports diverse user groups, a wide range of use cases, and
each investigation can be slightly different. Likewise, traces are a
rich data source with a large number of attributes attached to every
aspect of a trace; for example, every span will have multiple key-
value pairs and annotations. Consequently there are a multitude of
different ways to visualise traces. Existing tools attempt to satisfy
the broad range of use cases, yet offer little customisation, resulting
in cluttered visualisations containing frequently unnecessary and
distracting information for users.

Irrelevant data. Users have different requirements about which
data they want to see and how they interact with the visualisations.
This encumbers experienced users; most participants expressed
frustration at the way information was displayed to them and
discussed having to learn to just ignore aspects of it.

Experienced users are distracted by the information irrelevant
to their task and would rather narrow down to specific pieces.
When demonstrating existing tools, several participants remarked
that they don’t care about most of the data displayed and wish they
could exclude it completely.

Participants also described how novice users suffer from
information overload. For new users, trying to display all of the
pertinent information is giving too much information at once.

Useful information is often hidden. Several participants ex-
pressed frustration that information would be buried beneath several
clicks, slowing down investigations unnecessarily. In some cases,
visualisations would completely omit data from a trace that users
knew was present, forcing them to seek it elsewhere.

“I need to look at the JSON for this trace to actually see
what resolution these timestamps are actually in.” – P5

TVCG, FEBRUARY 2023 6

Insufficient customisation. Some tools lack customisation clearly
desired by users. The idea of subtly different data presentations
facilitating new discoveries was present in our interviews, reflecting
results in literature such as the ‘pop-out’ phenomenon [51] and
different visualisations eliciting different results [52].

“For a lot of people the visual aspect, having that pop
out and shifting how it appears is very useful.” – P6

Repeated effort. Users often repeat the same actions many times,
both as part of distinct workflows and within the same workflow.
Investigative processes often feature repeated use of the same visu-
alisations but for different source data (e.g. opening multiple tabs to
look at different exemplar traces). All participants highlighted how
repeated actions and manual effort can significantly slow down
investigations. In some situations this was so pronounced that our
users wouldn’t carry out what they knew would be useful analysis
because of the time and effort requirements.

“I would say the number one reason is that I just don’t
have time. I would love to be able to explore some of this
more... things I’d like to build and questions I would like
to answer which I can’t at the moment” – P6

For example, users will typically arrive at a UI midway through
an investigation (C1) with an idea of what they are looking for.
The tools we observed with our end users often present traces
with minimal interaction support requiring the user to then visually
scan to find relevant details. This is a problem we see echoed in
other industry efforts too (Table1). In several of the demonstrated
tools, users must perform ad-hoc visual explorations repeatedly
with multiple different traces to locate details. None of the tools
we observed allowed users to persist or re-use state.

Mental model. Users require a thorough mental model to interpret
a trace they are shown. Users often investigate things that ‘don’t
look right’, drawing from their understanding of ‘normal’ system
behavior. This is feasible for experienced users but greatly increases
the barrier to entry of this form of analysis to any new users.

6.3 C3: Unsupported Interactions
Several interactions featured prominently in our interviews as
important parts of troubleshooting workflows, yet are unsupported
in existing tools or possible only with ad-hoc workarounds.

Programmatic access. Troubleshooting with DT is inherently
open-ended, so inevitably users encounter a task that is not
supported by the current tooling, such as performing customised
aggregate analysis over large volumes of traces. In users’ current
workflows they instead must transition to progammatic APIs or
console tools to load or query the underlying trace data. While
programmatic access to traces is a necessary step, current tools
provide no assistance. Initiating this transition is cumbersome and
involves excessive manual effort to copy and paste trace IDs or
write long SQL queries to obtain traces from backend storage.

Aggregate analysis. Aggregate analysis arose for a number of
use cases yet is not supported in current tools beyond querying
high-level tabular datasets (pre-defined features extracted from
traces). Users must manually perform aggregate analysis using
programmatic access, writing queries to load and process the trace
data, and generating custom reports in analytic notebooks. Doing
this for common tasks requires substantial repeated effort and is
error prone, time-consuming, and difficult to repeat.

Navigating a trace. Existing trace visualisations assume that
users are performing an open-ended manual exploration. However,

following from C1, in practice users arrive at a visualisation
with a specific hypothesis in mind to investigate. In these cases,
exploration-based navigation is a poor fit for users, who instead
would resort to ad-hoc workarounds such as using browser-based
text search to identify spans with specific names.

In general, participants expressed a desire for searching on
trace attributes and frustration with existing tools. Moreover, users
need to search on any elements of the trace data – even if they are
not explicitly displayed in the current visualisation – since the user
might have arrived via a different visualisation that does display
the data, or the attributes might be hidden in the current view.

Lastly, users often want to undo or rewind actions, yet this is
unsupported in existing tools. Instead, users sometimes would have
to restart from the beginning.

“Remove filter just always pops you all the way back up
to the top, it doesn’t keep the stack. ” – P4

Trace Comparison. All participants described comparing one
trace to another as an interaction modality. No existing trace
visualisation system facilitates in a meaningful way comparison
of one trace to another(Table1). All users described cumbersome
approaches to comparing two traces which effectively boiled down
to opening up multiple browser windows and comparing visually:

6.4 C4: One Size Doesn’t Fit All
There is no consensus on the best way to visualise individual
traces, and it is unlikely that one visualisation is appropriate for all
tasks due to the open-ended nature of troubleshooting. However,
participants described how development efforts not only focused on
a ‘best’ visualisation approach, but also actively pushed deprecating
existing approaches that users liked. For example, a developer
describing another participant’s primarily used vis:

“Yeah so [old vis] is horrendously bad. We want to
basically stop maintaining and deprecate it” – P2

Surprisingly, we learned that developers of in-house tooling
currently receive minimal feedback on which aspects of the tooling
are frequently used or what could be improved. This may arise in
part due to tracing users being relatively disconnected (cf. §4). We
believe this problem is further exacerbated for open-source tools,
whose users are even further disconnected from developers.

6.5 C5: Data Quality
We identify several problems related to data quality. One was
simply linked to the longevity of trace data – tracing backends only
keep data for one or two weeks – making it difficult to reproduce
analyses. In addition, there were problems related to malformed
data: how it was presented in the UI and the impact that sampling
policy could have on the truthfulness of data being presented.
Tools focus on the ‘ideal’ trace. Existing tools are designed
to visualise ‘golden case’ trace data. However, troubleshooting
implicitly means looking at traces that might deviate from normal
to try to understand a problem. For example, troubleshooting long-
running requests inherently requires visualising very large traces,
which some tracing visualisations could not do.

“I know there’s no point trying to open something that’s
too large in the UI” – P5

Data can be missing or malformed. Users found it difficult to
ascertain if data was malformed or there was a problem with the
UI. Without even knowing for sure if the problem is in the UI or
the data this often leads to users simply having to throw away the
trace despite it potentially holding valuable insights.

TVCG, FEBRUARY 2023 7

TABLE 1
Capabilities of Existing Tools

Comp. A Comp. B Jaeger Zipkin Lightstep X-Ray Datadog Elastic Honeycomb New Relic Signoz SkyWalking DynaTrace Sentry
Is the tool open source? ⊠ ■ ■ ■ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ■ ■ ⊠ ⊠
Does the tool use swimlane view for individual traces? ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Can you view an individual trace in an alternative way? ■ ■ ■ ⊠ ⊠ ⊠ ■ ⊠ ⊠ ⊠ ⊠ ■ ▲ ⊠
Can you customise the display of a trace? (G1/2)

Change the colours? ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
Expand/collapse spans? ■ ■ ■ ■ ■ ■ ⊠ ■ ■ ■ ■ ⊠ ■ ■
Show/hide additional features of a span? ■ ⊠ ⊠ ⊠ ⊠ ? ⊠ ⊠ ▲ ■ ⊠ ⊠ ? ?

Is the customisation persisted? (G1) ⊠ ⊠ ⊠ ⊠ ? ? ? ? ▲ ⊠ ⊠ ⊠ ? ⊠
Can you search within a trace? (G3)

On service name? ■ ■ ■ ⊠ ■ ⊠ ? ⊠ ■ ⊠ ⊠ ⊠ ■ ■
On other features? ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ? ⊠ ⊠ ⊠ ⊠ ⊠ ■ ?

Switching between tools facilitated? (G4) � ⊠ ⊠ ⊠ � � � � � � � ⊠ � �
Easy to drop to programmatic access? (G4) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
History of trace interactions available? (G5) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
Does the trace view indicate outlier traces? (G6) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ■ ? ⊠ ⊠ ⊠ ⊠
Does the trace view indicate outlier spans? (G6) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ■ ? ⊠ ⊠ ⊠ ⊠
Can you compare two individual traces? (G7) ▲ ⊠ ▲ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠
Can you compare two sets of traces? (G7) ■ ⊠ ⊠ ⊠ ⊠ ■ ⊠ ? ■ ? ? ⊠ ? ?
Can the tool display malformed traces? (G8)

Does it flag errors? ■ ⊠ ■ ⊠ ■ ? ■ ■ ■ ■ ■ ⊠ ■ ■
Can it display a trace if it is missing data? ⊠ ⊠ ■ ⊠ ⊠ ? ? ? ? ■ ? ? ? ■

Can the tool display large traces? (G8)
Overview display of the whole trace? ⊠ ⊠ ■ ⊠ ■ ⊠ ⊠ ⊠ ⊠ ⊠ ■ ⊠ ⊠ ■
Can the UI load large (> 1000 spans) traces ■ ⊠ ■ ⊠ ? ? ? ? ? ? ? ? ? ?

■ Yes ⊠ No ▲ Tool partially satisfies the question ? Not possible to ascertain � Tool satisfies the question, but only within its own infrastructure

7 GUIDELINES AND RESEARCH OPPORTUNITIES

We propose eight guidelines for the future design of DT visuali-
sation and clarify their impact on further research. The following
table summarises how each of these guidelines addresses one or
more of the five challenges from §6.

G1 G2 G3 G4 G5 G6 G7 G8
C1 – Mismatched workflow ✓ ✓ ✓ ✓ ✓
C2 – Excessive user burden ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C3 – Unsupported interactions ✓ ✓ ✓ ✓
C4 – One Size Doesn’t Fit All ✓ ✓
C5 – Data quality ✓

These guidelines are intended to provide direction for develop-
ers of future tools for DT analysis, whilst also highlighting areas
of visualisation that can help mitigate the identified problems and
benefit from further research in this domain.

7.1 G1: Customisation and Persistence (C1, C2)
Our first guideline advocates that customisation should be a high-
priority feature for DT visualisations.

Prioritise customisation Customisation is desirable as there are
many diverse users and power users. We believe that the solution to
this is to facilitate and prioritise customisation of the visualisation
rather than trying to focus on one visualisation approach that
satisfies all users and use cases. For example, users should be able
to order key fields, change colour schemes, and alter the presence
or absence of visualisation aspects (such as connecting lines).

Persist customisation Customisation should persist – users do
not want to have to set up their ideal ‘view’ every time they come
to inspect traces but should be able to save their preferences and
select the configuration that best matches their investigation. Doing
this reduces effort each time a user revisits a visualisation and
streamlines the ability to repeat a workflow as they can jump
directly to what they need.

Customisation and persistence offer a wealth of future potential
research directions which we discuss in depth in §9. An interesting
challenge with DT is to determine how and where to bind the
persistence of customisation. One option is to bind decisions

per user; another could facilitate team members operating with a
shared persistence; another is to persist visualisation customisation
elements per individual trace; and another is to persist visualisation
customisation to a user session that spans multiple tools.

7.2 G2: Simple Starting Point (C1, C2)

While power users are a common user group of DT, it is also
important to provide an accessible entry point for novice users.
Hence we advocate for the initial view of a trace in tooling to
be as simple as possible. A simple starting point will reduce the
initial visual clutter that new users currently experience. That is,
designers may consider a constructivist alternative to the common
visualisation mantra: “overview first, zoom and filter, details on
demand” [28]. Expert users may build a desired view based on
their intuition and understanding of the data and system, expanding
and investigating the relevant parts of the visualisation as necessary,
building off of work on large graph exploration [53].

When coupled with further customisation and persistence
(G1), users can simply return to this view whenever they want.
Conversely, it also facilitates new users exploratively discovering
aspects of the tracing visualisation without being overwhelmed
by the initial view. One participant highlighted ongoing efforts to
improve usability for novices:

“Turning these overwhelming/complicated tools into
something actionable to somebody that hasn’t taken a
class is a challenge we’re starting to work on.” – P2

The first two guidelines address C1 by not restricting how a
user can interact, and address C2 by allowing users to control the
amount of information they are presented with.

To implement this guideline, we can benefit from prior
research on domain-specific adaptations of the information-seeking
mantra [54] and work on progressive disclosure [55].

There is also an opportunity for further work to reduce the
threshold of experience and knowledge required to make progress in
DT through approaches such as mixed-initiative user interfaces [56]
to explore the balance between human and machine effort –
automating some things while leaving some judgement to users
to create a ‘best of both worlds’ situation for human-machine

TVCG, FEBRUARY 2023 8

teaming by leveraging automated analysis of the huge amount of
data available and presenting it to users.

7.3 G3: Search-based Navigation (C1, C2, C3)
Search is a key interaction mode that differs significantly from
manual exploration. Users often know what they’re looking for
– something specific in a trace. Search must therefore be a
fundamental interaction supported by tools. Moreover, users need to
search on all elements of the underlying trace data, even those not
being displayed in the current visualisation. In support of search-
based navigation, particularly for novice users, efforts may be
informed by decades of HCI research on direct manipulation [57].
In particular, dynamic query widgets [58] are shown to improve
both performance and user satisfaction for searching and filtering.

This guideline addresses C3 by facilitating tasks that users
have a desire to carry out but currently can not do easily with the
existing tooling. Furthermore it addresses C1 by allowing more
of the data to be leveraged, rather than the existing narrow view
of workflows and reduces the user burden from C2 by allowing
greater exposition of the underlying data.

7.4 G4: Interlinking (C1, C2, C3, C4)
Ideally, tools provide links to visualise data in other tools. This
immediately reduces the amount of effort on users as they can
navigate directly between tools and easily go back and forth. This
guideline is not directly related to visual design but is nonetheless
a critical part of the ecosystem of usage.

Loosely-coupled tools. While interlinking can be implemented by
directly linking to other tools, this approach is brittle over time due
to the continual development of new tools and interfaces. Eventually
it will be infeasible to manually link each tool to each other tool.
Some existing proprietary DT solutions – such as Lightstep [6] –
have begun to address this problem by building ‘comprehensive
tools’. This approach does allow for easier linking between sections
of the analysis pipeline, but it is unclear whether this approach will
be sufficiently scalable to deal with new tools and visualisation
approaches, or flexible enough to address the needs of users – such
as our users who we found enjoyed the ability to choose between
different tools for visualising traces.

Ideally, tools can make use of a level of indirection via some
external management framework. Developers and designers of
tools would only need to expose the relevant types of data they can
visualise. This requires an infrastructural change that we strongly
believe would aid both users and developers of the tools in more
smoothly linking the different aspects of a DT workflow together.

Reusing state instead of starting from scratch. Users often want
to take the state from one step of their troubleshooting and apply
it to another, e.g., while looking at one trace, the user may want
to then load different data. Systems should support using a current
visualisation as context for populating other visualisations.

Dropping to programmatic access. Some of the problems that
require users to go away and look at the underlying data could
potentially be solved in situ by exposing more of the data. Tools
should make it easy to take data and state and begin working
programmatically. This can be achieved by exposing the specific
queries to the underlying trace datastores that reproduce the data
being visualised. We recommend that tools can ease the transition
by providing prepopulated synthesised queries for similar traces
that can be directly executed in a console. Moreover, due to

the prevalence of browser-based analytics notebooks, tools could
directly pre-populate a runnable notebook on behalf of the user, and
open it in a new browser tab. This would substantially cut down
time and errors introduced by doing these steps manually. There is
minimal prior work into linking visualisations to programmatic data
access, but some inspiration may be found in ‘Utopia Documents’
[59] which aimed to link academic articles with research data and
has seen some use in bioinformatics fields.

Successfully implementing interlinking would greatly reduce
the impact of C1 and C2 by reducing the existing extreme isolation
of DT visualisation and instead beginning to recognise individual
trace visualisation as one part of a rich analytical workflow. It
additionally addresses C3 and C4 by making the transitions
between tools less disruptive and reliant on existing knowledge.

7.5 G5: Interaction History (C1, C2, C4)

History within a visualisation. Visualisations should be designed
in a way that fully encapsulates the state that can be returned
to and re-rendered, as well as applied to subsequent steps. Tools
should assume that users want to go back and forth both within
and across visualisations, and might want to return to a previous
state. Accordingly, efforts on visualisation provenance can suggest
techniques for preserving and navigating states of an analysis,
elevating the importance of analytic processes to have equal or
greater importance to analytic results [60].

A stateful approach to visualising traces would allow for a
history of interactions and for users to be able to effectively undo
previous transformations on the data. Implementing this robustly
will also aid in inter-linking (G4) visualisations, which can be
achieved by sharing the state of the previous visualisation to use as
a starting point for the next.
History for reproducibility. A history of interactions with tools
and the associated state would also allow analysts to share their
analyses in a much more in-depth manner, showing another user
exactly how they arrived at a certain result. This would also be
beneficial when trying to introduce new users to the tool.
History as feedback for visualisation developers. If interaction
history is recorded, it can be leveraged by visualisation developers
to gain insights about user interactions. visualisation developers
could leverage usage data to understand how users interact with
systems, without having to rely on time-consuming qualitative
interviews. Moreover, as described in §4, current DT users are
disparate, which reduces the amount of communication and
visibility between developers and users. Automating this feedback
is therefore a compelling solution.

For example, if tools offer multiple views of the same data
and customisation options, the time spent in each view and the
selected options should be recorded. This data can be leveraged for
understanding common user settings and correlating different user
groups and levels of experience. It is also an opportunity to better
understand the complex interactions a user has between various
tools, by recording entry and exit points or, if possible, which tools
are accessed immediately before and after the current tool.

This guideline can be informed by related work on monitoring
users’ interactions [61] and work on building in feedback [62]. This
data could also be directly applied back to the visualisation to show
users popular interface options, along with other augmentations,
such as those presented in the work on Scented Widgets [63].

Recording interaction history can empower developers to
address C1 by understanding what users actually use and find

TVCG, FEBRUARY 2023 9

useful. It can also indicate prevalence of certain actions and inform
developers of the varying use cases as we describe in C4. It would
also address C2 and help users to communicate analyses to other
people more clearly and with less effort. There is potential for work
in the area of explanatory user interfaces [64] to lower the barrier
to entry for new users.

7.6 G6: Aggregate Context (C2, C3)
Participants repeatedly highlighted the importance of aggregate
context for extracting the value from DT visualisations, noting
the necessity of aggregate data for deciding which traces were
important to inspect. To reduce reliance on mental models we
propose that, where possible, developers should integrate aggregate
data into single trace views to provide as much context as is
feasible about the trace. A concrete example would be to display
per span latency distributions within a single trace visualisation.
This reduces the mental burden on expert users, and novice users
can begin to have some of the same insights as experienced users
without relying on years of experience to build up a deep contextual
mental model. This also makes things faster, as users often go back
and forth between aggregate and non-aggregate data.

This guideline addresses C2 and C3 by objectively connecting
data in aggregate to the single trace view and not relying on a user
to infer this information from their mental model. Concepts such
as external cognition [65] and focus+context [29] coupled with
work on embedding visualisations in-situ could aid in reducing the
cognitive load on users.

Aggregate context can be drawn from a variety of different
populations and can be stratified along many different dimensions.
For example, it could consider all traces ever, only traces containing
certain services, or traces from the last 24 hours, to name some
options. Prior work has described a need to stratify by diverse
features such as geographic region, operating system version, and
machine type [9]. Future work must solve the problem of whether
to prevent the user from being overwhelmed with multiple different
visualisations, facilitate customisation of the aggregated population,
or visualise the uncertainty of the corpus that is being used.

7.7 G7: Comparison (C2, C3)
We observed that in practice, comparison is commonplace, even
for tools with no explicit support; however, it is encumbered by
the need to manually configure multiple visualisations to display
the same information side-by-side. When comparison is treated
as a first class use case and combined with G1 and G4, this will
greatly increase the efficiency at which users can carry out their
tasks as they are no longer forced to work around the limitations
of working in multiple tabs and relying on visual memory rather
than being able to directly compare [66].

This guideline is intended to address C2 and C3 by encouraging
visualisation developers to directly integrate common tasks such
as comparison into their tools. Beyond making it easy for users to
externally compare two instances of a visualisation, there is also an
opportunity for special-purpose tools for trace comparison. Some
work has explored this topic [16], [67] , but most of the proposed
solutions are unwieldy and are not widely used or available in the
tools that we observed.

7.8 G8: Handle Edge-Cases Gracefully (C2, C5)
The primary use case for DT is troubleshooting. Troubleshooting
inherently requires investigating executions that are outside the

norm, where something may have gone wrong during execution
up to and including capturing the data itself. Ironically, trace
visualisations often focus on ‘golden case’ data and are ill-suited
to investigating edge-cases. Two edge-cases in particular are
insufficiently supported yet frequently encountered by users of
existing solutions: large traces and malformed data.

G2 proposes an approach for minimally representing an
individual trace which we believe also has the potential to help
with displaying large traces, opening up opportunities to redesign
the visualisation and UI to replace the large areas of redundant
information – such as those experienced by traces exhibiting fanout
(repeated calls of the same service), a common culprit in large
traces – with a simpler visualisation, and only expanding areas of
the trace that a user actually wants to interact with. Future work
in visualising large traces could also benefit from utilising large
graph presentation and processing algorithms [68].

Addressing malformed data requires more explicit support
from the trace collection system, to ensure that it flags when
data is dropped or corrupted. Then, UIs can visually indicate the
occurrence, rather than relying on the user to infer that the data
is malformed. Prior work in visualisation can inform these efforts.
A recent study evaluated alternative approaches to imputing and
visualising missing data, finding that explicitly highlighting missing
values led to better perceived data quality than breaking visual
continuity [69]. Hence, work investigating visualising missing data
could guide future work in this area.

A more general principle here is that investigating large traces
and malformed data is a crucial part of analysis carried out by
users and so, much like comparison, it should also be treated as
an important aspect in the development of the tool. In doing so
developers can address C2 by not relying on users to simply know
when data is malformed, and can begin to address C5 with more
complex approaches to interacting with malformed data.

8 ANALYSIS OF EXISTING TOOLS

To understand how well the current state-of-the-art tooling satisfies
the needs of DT users we derived a small survey to illustrate the
capabilities of existing widely-used systems. The questions were
derived from our open discussions and helped inform the guidelines
in §7. Table1 summarises the results and shows which capabilities
drove specific guidelines and how well existing solutions satisfy
these guidelines. The survey comprises some of the most widely
used DT tools available (4 open source, 8 commercial) and the
tools used by our experts (Comp.A,B). For commercial tools we
gleaned answers in two main ways: some tools such as Honeycomb
and Lightstep offer interactive sandboxes; for others we relied on
documentation and video presentations to ascertain functionality.
In some cases, marked as ‘unclear’, we were unable to ascertain
the answer due to a lack of information.

Overall we observe that while some tools satisfy some guide-
lines, no tool satisfies all; moreover, the tools used by our expert
users are neither significantly better nor worse than the existing
open-source or commercial tools.

All of the tools offer very limited customisation and persistence
(G1). Additionally, tools consistently failed to address presentation
of large traces (G8). Despite the importance to users, it was difficult
to ascertain how well commercial solutions would deal with large
traces or malformed traces; in sandbox environments the largest
trace was only approximately 40 spans, compared to thousands of
spans described by practitioners in our study.

TVCG, FEBRUARY 2023 10

Although users frequently raised the importance of malformed
or corrupted traces, none of the tools provided information
regarding how or if they could display them, with the exception of
Sentry, which provided detailed focus on highlighting malformed
traces and drawing users’ attentions to areas of traces where data
was suspected to be missing.

The ability to search within a trace (G3) is, with the exception
of DynaTrace, exclusively limited to searching on service name if
at all, and does not leverage any other data from a span.

One area where commercial tools performed better than our
experts’ tools was switching between tools (G4). This occurred
because commercial tools package ‘comprehensive’ all-in-one
solutions to facilitate trace discovery and inspection in a single tool.
As outlined in §7.4 this does improve user experience, but is a
brittle approach as it ties users into performing all their analysis in
one tool or suite of tools – something we explicitly saw our users
did not want. None of the tools facilitate programmatic access to
the underlying data in any straightforward manner.

Commercial solutions also better support aggregate comparison
(G7) and identifying outlier traces (G6) and even spans (New
Relic, Lightstep). However, when examining an individual trace
this aggregate context is then lost and cannot be seen. The
only exception is Honeycomb which provides comparison to the
aggregate within the individual trace view. Removing this aggregate
context makes it hard for users, especially new ones, to understand
whether a trace or span is performing as expected.

Finally, no tool supports comparing 2 individual traces or 2 sets
of traces, despite being a key use case identified by our users.

9 DISCUSSION

9.1 Limitations

The major limitation of our work is the small number of participants.
As detailed in §3.1, when seeking experienced users this is an
unavoidable byproduct of the nascency of DT as a domain area.
Additionally, having recruited from two major internet companies
there is a caveat that our results are most relevant to these large,
real-time environments. We have mitigated the risk of biasing our
results towards these specific companies in two ways.

Firstly, the companies we recruited from are at the forefront of
practically using DT and represent the state-of-the-art in utilising
open-source (company B) and bespoke (company A) solutions. We
have not recruited from companies using obscure solutions.

Secondly, the specific participants we recruited are experts in
the DT domain area. All participants have extensive experience,
working with more than one solution and though our results may
still be skewed towards specific solutions our participants currently
use, we encouraged them to speak in as general terms as possible to
ensure more broadly relevant results. Additionally, P1 and P5 have
both been actively involved in the implementation and maintenance
of two of the most widely used open-source DT solutions and have
deep knowledge of the current state-of-the-art as a result.

Finally, in §4 we establish two types of users, before going on
to mainly focus on consumers in §5. Although only two of our
participants represent pure consumers, potentially skewing results
to their experiences, all participants have long-term experience
working as consumers with the majority still actively doing so (and
not just developing or maintaining them).

9.2 Open Problems

Through this work we have exposed several challenges and
corresponding future research directions. In this section we extract
several research topics that we believe can have a broader impact
beyond just the DT application domain.

Multi-Variate Comparison. Trace comparison is analogous
to work on graph comparison [70]. Trace comparison adds
significant complexity as the data is multivariate, with multiple
possible dimensions to stratify for comparison. Rather than just
focusing on structural differences between generated graphs, further
problems are exposed such as temporal differences and parent-child
relationships. Approaches in dynamic graph presentation [71] and
temporal graph visualisation [72] may guide approaches, but it
remains an open research direction.

Interactions between different tools. Analysts’ workflows in-
volve an ecosystem of different tools rather than a single tool. This
is prevalent in many other fields that touch on data analytics or
data-driven decision making. Research has addressed this problem
by facilitating multiple linked-view visualisations [73], dashboard
design [74], as well as more contemporary work bridging the gap
between data and written documents to ease workflows [75]. Within
DT, companies have often developed fully integrated, single tools.
However, none of these effectively solve the recurring problem
of users wanting to interact with multiple standalone tools that
leverage the same data and facilitate stateful interaction, consistent
between investigations. Recent work has examined this problem
when working with repeating text across multiple documents
and tools [76] as well as beginning to apply these concepts to
visualisation [77]. It still remains a rich and unsolved problem area.
Standardisation may offer a solution, and the growing use of the
OpenTelemetry [4] DT standard is an encouraging sign of progress
towards more homogeneous and structured data.

Customisation of visualisation. It is difficult for a visualisation
to solve all problems for all users. Customisation has attracted
focus in dashboard presentation [78], but allowing a user to alter
the visual representation of data has received less attention outside
of classical approaches like bar and scatter plots [79]. There is
often an inherent tradeoff between customisation and usability.
For instance, this is exemplified by recent efforts in visualisation
development tools such as d3 and vega-lite [80], [81], where
the level of customisability tends to be inversely proportional to
the level of coding effort required. There is opportunity to more
deeply explore and manage this space of tradeoffs in distributed
tracing visualisation and other application areas. This further
introduces questions surrounding persistence and coordination –
should customisation be persisted based on the user’s profile, or on
the data that they are interacting with?

A sub problem of customisation is how to hide information
whilst giving an honest representation. This has implications in
fields such as visualising uncertainty in data [82], and diverse
customisation for differing personas [83].

Large data interactions. No tools adequately supported inter-
acting with large traces. There is a physical limit to what can
be displayed on the screen and the data itself is so large that
processing time may become prohibitive. Novel techniques for
navigating within large traces may find impact in other application
domains, e.g. text visualisation – looking for specific passages,
searching legal documents, analysing language used in reporting.
Conversely, prior approaches may apply to DT, such as searching

TVCG, FEBRUARY 2023 11

and filtering [84], explorative lenses [85], and decluttering tech-
niques such as temporal distortion [86]; though there remain open
questions, e.g. should lenses be a linked view or directly integrated.
Similarly, prior work on progressive visualisation [87] may likewise
inform scalability of large trace visualisation and suggest smarter
pre-fetching solutions.

Visualisation is useful for helping users find patterns in rich,
structured data; formalising this is a compelling future direction.
Other application domains deal with multi-faceted and large-scale
data, and inspiration may be found in areas such as multivariate
graph searching [88] and multivariate matrix navigation [84].

User interaction history. User interaction history is often stored
(although seldom in DT). How can this be leveraged? Are there
ways to take the same repeated actions and re-use them on new data
and reduce analysts’ wasted effort? Furthermore, effectively linking
data back to developers to inform their future design decisions is
another open area. Work in this area could similarly feed usage
data back to end-users to display how other users of the tool are
using it [63], thus helping novice users too.

Although we focused our findings on the context of visuali-
sation, they also offer implications and opportunities for future
directions in areas such as algorithmic support in trace comparison
and processing of large data before and during visualisation.

10 CONCLUSION

In this paper we presented the first characterisation of distributed
tracing tools, derived from an interview study with six expert
practitioners from two large internet companies. We presented
coded lists of user groups, use cases, and challenges of existing
tools; from these we derived eight guidelines for designing future
distributed tracing tools. We surveyed state-of-the-art open-source
and commercial distributed tracing tools and found that the majority
of guidelines remain unsatisfied. Lastly, we highlighted five open
problem areas that are relevant to distributed tracing and are also
compelling future directions for visualisation research in general.
Ultimately we hope our work opens up the application domain of
distributed tracing both to more principled design and novel future
visualisation contributions.

REFERENCES

[1] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs,
Distributed tracing in practice: Instrumenting, analyzing, and debugging
microservices. O’Reilly Media, 2020.

[2] Uber, “Jaeger,” Retrieved Aug. 2021 from https://www.jaegertracing.io.
[3] Apache, “Zipkin,” Retrieved Aug. 2021 from https://zipkin.io.
[4] OpenTelemetry, “OpenTelemetry,” Retrieved Aug. 2022 from

https://opentelemetry.io.
[5] W. W. W. C. (W3C), “Trace Context,” Retrieved Aug. 2021 from

https://www.w3.org/TR/trace-context/.
[6] “Lightstep,” Retrieved Sept. 2021 from https://lightstep.com.
[7] “Honeycomb,” Retrieved Aug. 2022 from https://www.honeycomb.io.
[8] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,

J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud &
edge systems,” in Proc. Twenty-Fourth Int. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2019, pp. 3–18.

[9] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi et al., “Canopy: An end-to-
end performance tracing and analysis system,” in Proc. 26th Symp. on
Operating Systems Principles, 2017, pp. 34–50.

[10] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” 2010.

[11] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker, “X-trace: A pervasive
network tracing framework,” in 4th USENIX Symp. Networked Systems
Design & Implementation (NSDI 07), 2007.

[12] I. Beschastnikh, P. Liu, A. Xing, P. Wang, Y. Brun, and M. D. Ernst,
“Visualizing distributed system executions,” ACM Transactions Software
Engineering and Methodology (TOSEM), vol. 29, no. 2, pp. 1–38, 2020.

[13] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman, R. Fonseca, and
G. R. Ganger, “Principled workflow-centric tracing of distributed systems,”
in Proc. 7th ACM Symp. Cloud Computing, 2016, pp. 401–414.

[14] C. Sridharan, “Distributed Tracing – we’ve been doing it wrong,” Retrieved
Sept. 2021 from https://copyconstruct.medium.com/distributed-tracing-
weve-been-doing-it-wrong-39fc92a857df, 2019.

[15] J. Users, “Jaeger UI Open Issues Page,” Retrieved Aug. 2022 from
https://github.com/jaegertracing/jaeger-ui/issues/, 2022.

[16] J. Farro, “Trace comparisons arrive in Jaeger 1.7,” Retrieved Aug.
2021 from https://medium.com/jaegertracing/trace-comparisons-arrive-
in-jaeger-1-7-a97ad5e2d05d, 2018.

[17] J. Trümper, J. Bohnet, and J. Döllner, “Understanding complex multi-
threaded software systems by using trace visualization,” in Proc. 5th int.
symp. on Software vis., 2010, pp. 133–142.

[18] W. De Pauw and S. Heisig, “Zinsight: A visual and analytic environment
for exploring large event traces,” in Proc. 5th int. symp. on Software vis.,
2010, pp. 143–152.

[19] F.-G. Ottogalli, C. Labbé, V. Olive, B. de Oliveira Stein, J. C. de Kergom-
meaux, and J.-M. Vincent, “Visualization of distributed applications for
performance debugging,” in Int. conf. computational science. Springer,
2001, pp. 831–840.

[20] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[21] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the art of performance visualiza-
tion.” EuroVis (STARs), 2014.

[22] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
and B. Hamann, “Combing the communication hairball: Visualizing
parallel execution traces using logical time,” IEEE Trans. Vis. Comput.
Graph., vol. 20, no. 12, pp. 2349–2358, 2014.

[23] E. W. Bethel, H. Childs, and C. Hansen, High performance visualization:
Enabling extreme-scale scientific insight. CRC Press, 2012.

[24] C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for the
detection of anomalous call stack trees in high performance computing
applications,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 215–
224, 2018.

[25] B. Gregg, “The flame graph,” Comm. ACM, vol. 59, pp. 48–57, 2016.
[26] K. Xu, Y. Wang, L. Yang, Y. Wang, B. Qiao, S. Qin, Y. Xu, H. Zhang, and

H. Qu, “Clouddet: Interactive visual analysis of anomalous performances
in cloud computing systems,” IEEE Trans. Vis. Comput. Graph., vol. 26,
no. 1, pp. 1107–1117, 2019.

[27] W. S. Cleveland and R. McGill, “Graphical perception: Theory, exper-
imentation, and application to the development of graphical methods,”
JASA, vol. 79, no. 387, pp. 531–554, 1984.

[28] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in The craft of information visualization.
Elsevier, 2003, pp. 364–371.

[29] G. W. Furnas, “Generalized fisheye views,” Acm Sigchi Bulletin, vol. 17,
no. 4, pp. 16–23, 1986.

[30] C. North, “Toward measuring visualization insight,” IEEE computer
graphics and applications, vol. 26, no. 3, pp. 6–9, 2006.

[31] E. Wall, M. Agnihotri, L. Matzen, K. Divis, M. Haass, A. Endert,
and J. Stasko, “A heuristic approach to value-driven evaluation of
visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp.
491–500, 2018.

[32] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code with in situ
visualizations to aid program understanding,” in CHI Conf. Proc., 2018,
pp. 1–12.

[33] D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit,
and C. Tominski, “Characterizing guidance in visual analytics,” IEEE
Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 111–120, 2016.

[34] J. Walny, C. Frisson, M. West, D. Kosminsky, S. Knudsen, S. Carpendale,
and W. Willett, “Data changes everything: Challenges and opportunities
in data visualization design handoff,” IEEE Trans. Vis. Comput. Graph.,
vol. 26, no. 1, pp. 12–22, 2019.

[35] M. Engebretsen, H. Kennedy, and W. Weber, “Visualization practices
in scandinavian newsrooms: A qualitative study,” in 21st int. Conf.
information Visualisation (iV). IEEE, 2017, pp. 296–300.

[36] L. E. G. Martins and T. Gorschek, “Requirements engineering for safety-
critical systems: An interview study with industry practitioners,” IEEE
Transactions Software Engineering, vol. 46, no. 4, pp. 346–361, 2018.

TVCG, FEBRUARY 2023 12

[37] Y.-a. Kang and J. Stasko, “Characterizing the intelligence analysis process:
Informing visual analytics design through a longitudinal field study,” in
IEEE conf. visual analytics science and technology (VAST). IEEE, 2011,
pp. 21–30.

[38] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data
analysis and visualization: An interview study,” IEEE Trans. Vis. Comput.
Graph., vol. 18, no. 12, pp. 2917–2926, 2012.

[39] Z. Liu, B. Jiang, and J. Heer, “immens: Real-time visual querying of big
data,” in Computer Graphics Forum, vol. 32, no. 3pt4. Wiley Online
Library, 2013, pp. 421–430.

[40] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” in CHI Conf. Proc., 2018, pp. 1–12.

[41] A. Nurwidyantoro, M. Shahin, M. Chaudron, W. Hussain, H. Perera, R. A.
Shams, and J. Whittle, “Towards a human values dashboard for software
development: An exploratory study,” in Proc. 15th ACM/IEEE Int. Symp.
Empirical Software Engineering and Measurement, 2021, pp. 1–12.

[42] C. Zuo, L. Ding, and L. Meng, “A feasibility study of map-based
dashboard for spatiotemporal knowledge acquisition and analysis,” ISPRS
Int. Journal Geo-Information, vol. 9, no. 11, p. 636, 2020.

[43] Z. Pan, C. Li, and M. Liu, “Learning analytics dashboard for problem-
based learning,” in Proc. 7th ACM Conf. Learning@ Scale, 2020, pp.
393–396.

[44] K. DeMarrais, “Qualitative interview studies: Learning through experi-
ence,” Foundations for research: Methods of inquiry in education and the
social sciences, vol. 1, no. 1, pp. 51–68, 2004.

[45] M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology:
Reflections from the trenches and the stacks,” IEEE Trans. Vis. Comput.
Graph., vol. 18, no. 12, pp. 2431–2440, 2012.

[46] J. C. Johnson and S. C. Weller, “Elicitation techniques for interviewing,”
Handbook of interview research: Context and method, pp. 491–514, 2002.

[47] J. S. Olson and W. A. Kellogg, Ways of Knowing in HCI. Springer, 2014,
vol. 2.

[48] B. Chametzky et al., “Coding in classic grounded theory: I’ve done an
interview; now what?” Sociology Mind, vol. 6, no. 04, p. 163, 2016.

[49] J. W. Creswell and C. N. Poth, Qualitative inquiry and research design:
Choosing among five approaches. Sage publications, 2016.

[50] N. Elmqvist and J. S. Yi, “Patterns for visualization evaluation,” Informa-
tion Visualization, vol. 14, no. 3, pp. 250–269, 2015.

[51] Q. Wang, P. Cavanagh, and M. Green, “Familiarity and pop-out in visual
search,” Perception & psychophysics, vol. 56, no. 5, pp. 495–500, 1994.

[52] T. M. Mann and H. Reiterer, “Evaluation of different visualizations of
web search results,” in Proc. 11th Int. Workshop Database and Expert
Systems Applications. IEEE, 2000, pp. 586–590.

[53] F. Van Ham and A. Perer, ““search, show context, expand on demand”:
Supporting large graph exploration with degree-of-interest,” IEEE Trans.
Vis. Comput. Graph., vol. 15, no. 6, pp. 953–960, 2009.

[54] B. Craft and P. Cairns, “Beyond guidelines: what can we learn from
the visual information seeking mantra?” in 9th Int. Conf. Information
Visualisation. IEEE, 2005, pp. 110–118.

[55] G.-J. Ding, T. Hwang, and P.-C. Kuo, “Progressive disclosure options for
improving choice overload on home screen,” in Int. Conf. Applied Human
Factors and Ergonomics. Springer, 2020, pp. 173–180.

[56] E. Horvitz, “Principles of mixed-initiative user interfaces,” in CHI Conf.
Proc., 1999, pp. 159–166.

[57] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct manipulation
interfaces,” Human–computer interaction, vol. 1, no. 4, pp. 311–338,
1985.

[58] C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic queries for
information exploration: An implementation and evaluation,” in CHI Conf.
Proc., 1992, pp. 619–626.

[59] T. K. Attwood, D. B. Kell, P. McDermott, J. Marsh, S. Pettifer, and
D. Thorne, “Utopia documents: linking scholarly literature with research
data,” Bioinformatics, vol. 26, no. 18, pp. i568–i574, 2010.

[60] C. North, R. Chang, A. Endert, W. Dou, R. May, B. Pike, and G. Fink,
“Analytic provenance: process+ interaction+ insight,” in CHI’11 Extended
Abstracts on Human Factors in Computing Systems, 2011, pp. 33–36.

[61] J. Alexander, A. Cockburn, and R. Lobb, “Appmonitor: A tool for
recording user actions in unmodified windows applications,” Behavior
Research Methods, vol. 40, no. 2, pp. 413–421, 2008.

[62] S. McKenna, D. Staheli, and M. Meyer, “Unlocking user-centered design
methods for building cyber security visualizations,” in 2015 IEEE Symp.
on Visualization for Cyber Security. IEEE, 2015, pp. 1–8.

[63] W. Willett, J. Heer, and M. Agrawala, “Scented widgets: Improving
navigation cues with embedded visualizations,” IEEE Trans. Vis. Comput.
Graph., vol. 13, no. 6, pp. 1129–1136, 2007.

[64] A. Garcı́a Frey, G. Calvary, and S. Dupuy-Chessa, “Xplain: an editor for
building self-explanatory user interfaces by model-driven engineering,” in

Proc. 2nd ACM SIGCHI symp. Engineering interactive computing systems,
2010, pp. 41–46.

[65] M. Scaife and Y. Rogers, “External cognition: how do graphical represen-
tations work?” Int. journal human-computer studies, vol. 45, no. 2, pp.
185–213, 1996.

[66] T. Munzner, Visualization analysis and design. CRC press, 2014.
[67] R. R. Sambasivan, I. Shafer, M. L. Mazurek, and G. R. Ganger,

“Visualizing request-flow comparison to aid performance diagnosis in
distributed systems,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12,
pp. 2466–2475, 2013.

[68] M. Molina-Solana, D. Birch, and Y.-k. Guo, “Improving data exploration
in graphs with fuzzy logic and large-scale visualisation,” Applied Soft
Computing, vol. 53, pp. 227–235, 2017.

[69] H. Song and D. A. Szafir, “Where’s my data? evaluating visualizations
with missing data,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp.
914–924, 2018.

[70] K. Andrews, M. Wohlfahrt, and G. Wurzinger, “Visual graph comparison,”
in 13th Int. Conf. Information Visualisation. IEEE, 2009, pp. 62–67.

[71] F. Beck, M. Burch, and S. Diehl, “Towards an aesthetic dimensions
framework for dynamic graph visualisations,” in 13th int. conf. information
visualisation. IEEE, 2009, pp. 592–597.

[72] N. Kerracher, J. Kennedy, and K. Chalmers, “The design space of temporal
graph visualisation.” in EuroVis (Short Papers), 2014.

[73] J. C. Roberts, “Exploratory visualization with multiple linked views,” in
Exploring geovisualization. Elsevier, 2005, pp. 159–180.

[74] A. Janes, A. Sillitti, and G. Succi, “Effective dashboard design,” Cutter
IT Journal, vol. 26, no. 1, pp. 17–24, 2013.

[75] Z. Chen and H. Xia, “Crossdata: Leveraging text-data connections for
authoring data documents,” in CHI Conf. Human Factors Comput. Sys.,
2022, pp. 1–15.

[76] H. L. Han, J. Yu, R. Bournet, A. Ciorascu, W. E. Mackay, and
M. Beaudouin-Lafon, “Passages: Interacting with text across documents,”
in CHI Conf. Human Factors Comput. Sys., 2022, pp. 1–17.

[77] L. Nonnemann, M. Hogräfer, H. Schumann, B. Urban, and H.-J. Schulz,
“Customizable coordination of independent visual analytics tools,” 2021.

[78] M. Elias and A. Bezerianos, “Exploration views: understanding dashboard
creation and customization for visualization novices,” in IFIP conference
on human-computer interaction. Springer, 2011, pp. 274–291.

[79] B. Saket, H. Kim, E. T. Brown, and A. Endert, “Visualization by
demonstration: An interaction paradigm for visual data exploration,” IEEE
Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 331–340, 2016.

[80] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2301–2309, 2011.

[81] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-lite:
A grammar of interactive graphics,” IEEE Trans. Vis. Comput. Graph.,
vol. 23, no. 1, pp. 341–350, 2016.

[82] J. Hullman, X. Qiao, M. Correll, A. Kale, and M. Kay, “In pursuit of
error: A survey of uncertainty visualization evaluation,” IEEE Trans. Vis.
Comput. Graph., vol. 25, no. 1, pp. 903–913, 2018.

[83] B. J. Jansen, J. O. Salminen, and S.-G. Jung, “Data-driven personas for
enhanced user understanding: Combining empathy with rationality for
better insights to analytics,” Data and Information Management, vol. 4,
no. 1, pp. 1–17, 2020.

[84] Y. Yang, W. Xia, F. Lekschas, C. Nobre, R. Krüger, and H. Pfister,
“The pattern is in the details: An evaluation of interaction techniques
for locating, searching, and contextualizing details in multivariate matrix
visualizations,” in CHI Conf. Human Fact. Comput. Sys., 2022, pp. 1–15.

[85] R. Rao and S. K. Card, “The table lens: merging graphical and symbolic
representations in an interactive focus+ context visualization for tabular
information,” in CHI Conf. Proc., 1994, pp. 318–322.

[86] B. Morrow, T. Manz, A. E. Chung, N. Gehlenborg, and D. Gotz, “Periphery
plots for contextualizing heterogeneous time-based charts,” in IEEE
visualization conf. (VIS). IEEE, 2019, pp. 1–5.

[87] J.-D. Fekete, D. Fisher, A. Nandi, and M. Sedlmair, “Progressive data
analysis and visualization,” 2019.

[88] H. Kobayashi, H. Suzuki, and K. Misue, “A visualization technique to
support searching and comparing features of multivariate datasets,” in
19th Int. Conf. on Information Visualisation. IEEE, 2015, pp. 310–315.

Thomas Davidson is a PhD candidate at the Max Planck Institute for
Software Systems as part of the Cloud Software Systems Group.

Emily Wall is an assistant professor in Computer Science at Emory
University, where she directs the Cognition and Visualization Lab.

Jonathan Mace is tenure-track faculty at the Max Planck Institute for
Software Systems and head of the Cloud Software Systems Group.

