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Figure 1: The interface, Interaxis [12], used in the experiment to explore and categorize a dataset of basketball players.

ABSTRACT

Recently, Wall et al. proposed a set of computational metrics for
quantifying cognitive bias based on user interaction sequences. The
metrics rely on a Markov model to predict a user’s next interaction
based on the current interaction. The metrics characterize how a
user’s actual interactive behavior deviates from a theoretical baseline,
where “unbiased behavior” was previously defined to be equal prob-
abilities of all interactions. In this paper, we analyze the assumptions
made of these metrics. We conduct a study in which participants,
subject to anchoring bias, interact with a scatterplot to complete
a categorization task. Our results indicate that, rather than equal
probabilities of all interactions, unbiased behavior across both bias
conditions can be better approximated by proximity of data points.

Index Terms: Human-centered computing—Human Computer
Interaction (HCI); Human-centered computing—Visualization

1 INTRODUCTION

As data generally becomes larger and more ubiquitous, visualizations
of data are increasingly used for analysis and decision making in
domains such as health care, consumer products, government policy,
and so on. However, it is unclear what the role of cognitive bias is
as humans use these visualizations to analyze data. Recent work
has begun to grapple with this question by verifying that users of
visualizations are indeed susceptible to cognitive biases (e.g., the
attraction effect [5], anchoring bias [2], selection bias [9], etc.),
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by introducing metrics to quantify those biases [8, 9, 23, 24], and
by suggesting techniques to mitigate biased decision making with
visualizations [4, 13].

Recently, Wall et al. introduced a set of six computational metrics
for characterizing aspects of bias in a user’s analytic process [23,24].
These bias metrics are computed by comparing a user’s interaction
sequences to a baseline of unbiased behavior. In this paper, we
analyze the assumptions made about how to model unbiased behav-
ior in [23]. The baseline of unbiased behavior was theorized as a
Markov model, where each combination of {data point, interaction
type} constitutes a unique state. However, “unbiased behavior” was
initially suggested to be represented as equal probabilities between
all states in the Markov model. This assumes randomness in the
user’s interactive behavior, which we posit is an unreasonable as-
sumption for most tasks and interfaces. Hence, we experimentally
challenge the assumption of equal probabilities of interactions by
exploring people’s actual interaction sequences as they analyze data.

To do so, we conducted an experiment in which we induced an-
choring bias (the tendency for people to rely too heavily on initial
“anchoring” information) [7] before participants performed a cate-
gorization task with an interactive scatterplot [12] (Figure 1). From
recorded interactions, we derive a Markov model representing users’
observed interactive behavior across two bias conditions. Our analy-
sis indicates that, rather than equal probabilities of all interactions,
people’s interactions can be better modeled roughly based on the
proximity of data points. That is, people are more likely to interact
with nearby data points than those that are far away.

2 RELATED WORK

Cognitive bias is a term used to describe errors that result from
the use of “rules of thumb” or heuristics in decision making [19].
The cognitive science community has identified hundreds of these
heuristics [11]. Of particular relevance to the present work is an-
choring bias, or the tendency to rely more heavily on information
that is first presented [7, 10]. In one experiment to illustrate anchor-



ing bias, participants were asked to judge whether the number of
African countries in the United Nations was above or below a thresh-
old X , then estimate the actual number [19]. The threshold X was
determined randomly and thus should have no impact on people’s
decisions. However, researchers found that the initial anchoring
number strongly impacted the estimates people made.

Bias impacts many aspects of the visual data analysis
pipeline [18], including data sampling bias, algorithmic bias, and
analysts’ cognitive bias in decision making [25]. Herein, we focus
specifically on cognitive bias in visual analytics. Recent work has
focused on formalizing cognitive bias in the context of visual analyt-
ics [6, 21], demonstrating the existence of a bias during interactive
data analysis [2, 5, 9, 22], or even proposing ways of mitigating bi-
ased decision making [4, 13]. Our work takes a step back from these
formalizations to understand what commonalities exist in interactive
user behavior under different bias conditions.

3 WALL ET AL.’S BIAS METRICS

The bias metrics take real-time user interaction logs as input. In-
teractions, in this case, provide an externalized and approximate
representation of a user’s cognitive state. The detailed formulation
of the metrics is outside the scope of the present work and can be
seen in [23]. Instead, in this work we focus on defining a model
of “unbiased” interactive behavior by characterizing commonalities
of users in different bias conditions. This can ultimately improve
the sensitivity of Wall et al.’s bias metrics [23, 24] to more precisely
characterize the ways in which users are biased.

Defining a Markov Model. The bias metrics compare a user’s
actual interactive behavior to a theoretical baseline of unbiased
behavior using a Markov model. A Markov model is comprised of
a finite set of states and transitions that occur between the states.
It can be conceptualized as a graph, where nodes are states and
edges are transitions. A Markov model predicts the next state (the
user’s next interaction) based only on the current state (the user’s
current interaction). For each state (node) in the model, there are
possible transitions to other states (outgoing edges), each with an
associated probability of occurrence. The sum of probabilities from
a given state to all other states must equal 1, representing all possible
subsequent states. A Markov model was chosen to model interactive
behavior due to its simplicity (predictions based on a single current
interaction) and generalizability (a new state space can be defined
according to the data and interactions relevant in a given task).

Example. To illustrate how a Markov model applies to interactive
behavior in visualizations, consider a user interacting with a scat-
terplot (Figure 2). Each combination of data point (i.e., point on
the scatterplot) and interaction type (e.g., click, hover, drag, etc.)
comprises a state in the model. The green dots represent a data point
that has been visited, and the red arrows represent all possible transi-
tions from the current state. The green arrows represent the actual
sequence of the user’s interactions. First, the user hovers on data
point d1 (Figure 2a). Next, she hovers on data point d2 (Figure 2b),
then d3 (Figure 2c), and lastly clicks on data point d3 (Figure 2d).
This sequence of interactions comprises a Markov chain, whose
specific probability can be computed by comparing it to all possible
sequences of interactions.

4 EXPERIMENT METHODOLOGY

We conducted a study to explore the assumptions of “unbiased”
behavior in Wall et al.’s bias metrics. In the original formulation
of the bias metrics [23] and subsequent experiment [24], users’
interaction sequences were compared to unbiased behavior defined
by equal probabilities for all interactions. However, we believe this
assumption is likely ill-fit for most tasks and interfaces. In recent
work, researchers constructed a theoretical Markov model based on
size of data points (pixel area on the screen) as an approximation

(a) Interaction 1: hover over
point d1; resulting Markov chain
{{hover,d1}}

(b) Interaction 2: hover on point
d2; resulting Markov chain
{{hover,d1},{hover,d2}}

(c) Interaction 3: hover over
point d3; resulting Markov
chain {{hover,d1},{hover,d2},
{hover,d3}}

(d) Interaction 4: click on
point d3; resulting Markov
chain {{hover,d1},{hover,d2},
{hover,d3},{click,d3}}

Figure 2: An illustration of a Markov chain produced by four in-
teractions with a scatterplot. Figure reproduced from [23] with
permission.

for probability of interaction [3]. We are motivated by such work
to create a more precise model of unbiased user behavior based on
experimental observations.

We hypothesize that proximity can be used to better model user
behavior. That is, people will be more likely to interact with nearby
data points than far away data points, by starting with what they
know (the initial anchoring information) and expanding their anal-
ysis, analogous to local exploration of graphs [17]. To test this hy-
pothesis, we replicated the experiment conducted by Wall et al. [24],
described below, but refocused data analysis to examine probabilities
of interaction sequences. Participants were randomly assigned to
one of two task framing conditions, designed to anchor them on
specific attributes of the dataset. They were tasked to utilize all of
the data to categorize 100 anonymized basketball players by position
(Center, Power Forward, Small Forward, Shooting Guard, or Point
Guard) using InterAxis [12] (Figure 1). To our knowledge, there
is no known way to explore truly “unbiased” or perfectly neutral
user behavior. Users will be impacted by the framing of the task,
prior biases and experiences, etc. Hence, we approximate unbiased
behavior by examining the commonalities between two groups of
participants who are biased in a controlled way.

4.1 InterAxis

Participants utilized a scatterplot-based visualization tool, Inter-
Axis [12], the same version of the tool used in the experiment in [24].
In the dataset of basketball players, each player is represented in the
scatterplot by a circle (Figure 1A), where details (statistics including
Height, Weight, Rebounds, Free Throws, etc.) about a player can be
seen on the right (Figure 1B) by hovering over a circle in the scat-
terplot. The axes of the scatterplot can be manipulated by selecting
from a drop-down, or by dragging points into the bins on the left
and right sides of the x-axis (Figure 1C). The system then computes
a weighted combination of attributes representing the difference
between the points in the bins. The weights can be further manipu-
lated by dragging the bars beneath the x-axis (Figure 1D). Users can
click one of the colored circles on the right (Figure 1E) to display a



(a) Role Condition (b) Size Condition (c) Size - Role

Figure 3: Aggregate probability transition matrices by condition. Rows (current interaction) and columns (next interaction) represent each of
100 basketball players, grouped by position. The highlighted squares along the diagonals indicate subsequent interactions with the same player
position. Darker squares indicate higher probabilities.

description of that position. Subsequently clicking on a point in the
scatterplot will color and categorize that player accordingly.

4.2 Analytic Task & Framing Conditions
As in the previous study by Wall et al. [24], we likewise focus on the
task of data categorization. Participants were tasked to categorize
100 anonymized NBA basketball players1, 20 players for each of
the five positions: Center (C), Power Forward (PF), Small Forward
(SF), Shooting Guard (SG), and Point Guard (PG). Participants were
not shown the name or team of the players, but were given the
following statistics: 3-Pointers Attempted, 3-Pointers Made, Assists,
Blocks, Field Goals Attempted, Field Goals Made, Free Throws
Attempted, Free Throws Made, Minutes, Personal Fouls, Points,
Offensive Rebounds, Steals, Total Rebounds, Turnovers, Games
Played, Height (Inches), and Weight (Pounds).

Participants were randomly assigned to one of two conditions. In
each condition, we manipulated task framing [20] to impact users’
analysis in a controlled way. The two sets of position descriptions
in the task were designed to anchor participants on a specific set of
attributes or statistics in the data (Figure 1E). Participants in the Size
condition were shown descriptions of the five positions that used
statistics about their physical size (i.e., Height and Weight), while
participants in the Role condition were shown descriptions that used
statistics associated with their typical role on the court. For full
experimental details, including the specific language used in each
framing condition, please refer to supplemental materials 2.

4.3 Participants
We recruited 13 participants to complete our study (7 in the Size
condition). Eligible participants completed a screening questionnaire
to demonstrate sufficient background knowledge about the domain
(basketball) and visualization literacy (scatterplot interpretation) [1,
14]. There was no compensation to participants in the study.

4.4 Procedure
The procedure for this experiment followed the same as in [24], with
differences detailed below. Participants provided informed consent
and completed two questionnaires (demographic & interface usabil-
ity). They were shown videos demonstrating how to use InterAxis.
Different from the procedure in [24], participants in this study were
given the opportunity to get accustomed to the interface for 5 min-
utes with a small dataset of 15 cars to be categorized by type (as
either sedan, SUV, or sports car); they were also shown a refresher
video on basketball positions. The main task took approximately 15-
20 minutes, during which interactions in the interface were logged.
Different from [24], we collected one additional piece of information

1 http://stats.nba.com/
2https://github.com/gtvalab/bias-markov

in the interaction logs to aid our analysis: the locations of all data
points at the time of each interaction. In total, the experiment took
about 45 minutes.

5 DATA ANALYSIS AND RESULTS

For simplicity in an initial model, we aggregated all interaction
types (click, hover, drag) with a data point into a single Markov state.
Next, we first filtered out some interactions. Hovers and drags less
than 100ms were likely accidental interactions [16], while the user
passed from one intentional point to the next; so we removed those
interactions. Participants performed, on average, 1043 interactions
(SD = 390) which filtered down to an average of 527 interactions
(SD = 148). Participants had an average categorization accuracy
of 54% (SD = 12%). Two participants (P12 and P13) did not label
all 100 players in the scatterplot. They categorized 89

100 and 97
100 ,

respectively. Next we describe and visualize the probabilities result-
ing from our analysis. All results can be seen in greater detail in
supplemental materials2.

Comparing Conditions. Figure 3 shows aggregate matrices repre-
senting the probability of interacting with subsequent players in the
scatterplot. Rows indicate the “current” interaction, and columns
represent the “next” interaction. Hence, a cell is colored darker
according to the probability of interacting first with the associated
“current” player and then with the “next” player, where players in
each matrix are ordered by their position. We see similar patterns
across both conditions. Namely, there is a strong trend along the
diagonal. That is, there is approximately a 50% chance that from
a given state (player interaction), users next transition will remain
in the same state (interact with the same player again), regardless
of the condition (50.04% for role condition, 54.74% for size condi-
tion). The difference matrix between the two conditions is shown in
Figure 3(C), revealing near-0 differences between most transition
probabilities in the two conditions (98.5% of transition probabilities
¡ 0.1). Collectively these results suggest similar transition probabili-
ties between states, regardless of condition.

Figure 4: Interactions within the scatterplot were grouped into states
in the Markov model by dividing the scatterplot into (A) a 2x2 grid,
(B) a 3x3 grid, and (C) a 4x4 grid.

http://stats.nba.com/
https://github.com/gtvalab/bias-markov


(a) 2x2 grid (4 states) (b) 3x3 grid (9 states) (c) 4x4 grid (16 states)

Figure 5: Aggregate probability transition matrices of all participants when Markov states are defined by grouping points in the scatterplot in a
2x2, 3x3, and 4x4 grid. Darker squares indicate higher probabilities.

Proximity Analysis. In this analysis, we wanted to approximate
the probability of interacting with visually nearby data points. To
do so, we defined new Markov states by dividing the scatterplot into
equal size grids (Figure 4): 2x2 (4 states), 3x3 (9 states), and 4x4
(16 states), and assessed the probability of interacting with points
within and between these fixed grid squares. We chose to use a
fixed grid overlay for our analysis in order to examine proximity
even when the position of individual points on the dynamic scatter-
plot may be changing. From the previous analysis, we know that
multiple interactions with the same player are significantly more
likely (e.g., hover on a player then click to label). Hence, in this
analysis, we remove subsequent interactions with the same player
to see if interactions with different basketball players tend to still
follow trends of proximity. Furthermore, we observe no significant
difference between conditions, so here we present results aggregated
for all 13 participants. Figure 5 shows the results of this analysis. We
observe the hypothesized pattern of proximity: users are more likely
to interact with other data points within the same grid square (i.e.,
nearby data points) than data points in different grid squares (i.e., far
away data points). This is evident by the stronger colors and hence
higher probabilities along the diagonal. In Markov2x2, we find that
nearby interactions (diagonal probabilities in Figure 5) comprise, on
average, 75.3% of subsequent interactions. Similarly, in Markov3x3
and Markov4x4, we find nearby interactions to comprise 64.36%
and 54.29% of subsequent interactions, respectively. Apart from
subsequent interactions within the same grid square (higher diagonal
probabilities), we also observe a trend in Markov3x3 and Markov4x4
parallel to the diagonal, indicating that people often perform subse-
quent interactions with adjacent grid squares.

A New Baseline. Results of our experiment suggest that users are
more likely to interact with nearby data points than far away data
points when performing a categorization task with an interactive
scatterplot. How do we now incorporate this information into a new
probability matrix that represents a baseline of unbiased behavior?

We tend to favor simple models or modifications over more com-
plex ones, with modest changes to the equal-probability baseline.
Hence, we propose that in the context of our experimental task, a
more accurate baseline of unbiased behavior could adjust from the
equal-probability baseline by distributing interaction probabilities
such that subsequent interactions with the same data point comprise
roughly 50% of interactions from any given state. We could likewise
account for proximity by grouping points in grid squares (as in Fig-
ures 4-5) and defining probabilities of subsequent interactions within
each grid square (nearby interactions) as at least 50% of interactions
from any given state, according to the grid size chosen.

6 DISCUSSION AND FUTURE WORK

Explaining Unbiased Interaction Sequences. This experiment
provides a more accurate baseline of unbiased behavior in the con-

text of our tool, dataset, and analytic task. However, we posit that
these results may not be especially generalizable. Higher probabil-
ity of interactions with a specific quadrant of the dataset could be
explained by the structure of the task. For instance, because the
player descriptions tended to point users to a specific part of the
distribution (i.e., the tallest players, the players with the highest
number of Assists, etc.), interactions with the high end of the axis
likely all occurred within a given quadrant. With all else equal, a
slightly different problem framing may likely have yielded a vastly
different baseline model. Hence, it is important to account for the
specific context of a problem when defining a baseline, including the
tool, task framing, and so on. Our experiment provides a model by
which more accurate baseline models can be derived through pilot
studies for interfaces that may utilize the bias metrics [23, 24].

Other Notions of Proximity. In this work, we focused on un-
derstanding how proximity can be used to model users’ interactive
behavior. However, we only roughly estimated proximity by group-
ing interactions into Markov states based on a grid pattern. The
purpose of this choice was the ease with which it could be computed
using a Markov model. Future work could consider other notions of
proximity (e.g., measure the precise pixel distance between points).

Future Models. While the current study focused on analyzing data
from the perspective of proximity, there are many other variables
that could impact user behavior. Future work could include an
examination of how aspects of visual salience [15] impact interactive
behavior (e.g., default size of data points in the scatterplot, variable
encodings using hue or opacity, etc).

Overfitting. There are numerous ways to model unbiased behavior,
as mentioned above. However, a common danger among them is to
create models that are overfit to user data from a single experiment.
Hence, we must exercise caution in how we define or alter models
of unbiased behavior, keeping in mind that often the simplest ap-
proaches work best. The next step given the current work to improve
the baseline is to implement and compare it against other potential
baselines of unbiased behavior to see how well the resulting metrics
are able to detect deviations in user behavior in real-time.

7 CONCLUSION

In this paper, we have described an experiment in which we assess
the probability of users interacting with different sequences of data
points in a categorization task with an interactive scatterplot. Our
results indicate that, regardless of bias, users’ interaction sequences
tend to follow trends of proximity; that is, they are more likely to
interact with nearby data points than far away data points. These
results enable us to refine what unbiased interactive behavior looks
like. This can ultimately be leveraged by bias metrics [23, 24] to
more accurately detect when user behavior deviates from acceptable,
unbiased behavior.
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