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ABSTRACT
Metacognition, or the awareness and regulation of one’s own cogni-
tive processes, allows individuals to take command of their learn-
ing and decision making in various contexts. In tasks that require
problem-solving and adaptive learning, individuals with height-
ened metacognitive awareness tend to outperform others, as they
are better equipped to regulate cognition, leading to more effec-
tive processes. On the other hand, visualization research facilitates
exploration and decision making with data. We posit that metacog-
nitive frameworks that examine how individuals think about their
own thinking processes can likewise enhance visualization pro-
cesses. In this paper, we review metacognition literature from the
cognitive and learning science to identify opportunities in visual-
ization to improve people’s ability to reason with data. We propose
the use of a metacognitive framework, serving as a starting point
to inspire future research to improve visualization practices and
outcomes.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; Visualization theory, concepts and paradigms.
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1 INTRODUCTION
Interactive visualizations do more than just display data; they fa-
cilitate a dynamic dialogue between the user and the information
presented. This interaction allows users to manipulate and probe
into the data, encouraging a deeper engagement and understanding.
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Furthermore, there is a significant opportunity within this dialogue
to integrate metacognition, defined as the awareness and regula-
tion of one’s own cognitive processes [29]. By enabling users to
reflect on their own thought processes and decision-making as they
interact with the data, we can promote a deeper level of cognitive
engagement, fostering more insightful and informed decisions. In
doing so, we can shift the passive data consumption into an active
and reflective learning process.

Acknowledged as an essential component for effective learn-
ing, problem-solving, and cognitive development, metacognition
has been extensively explored within the fields of education and
psychology [28, 30]. In educational settings, teaching students to
think metacognitively enhances their ability to learn and encode
information [76], encouraging a deeper understanding of the mate-
rial [19]. In fact, it has been shown in numerous settings that indi-
viduals with strong metacognitive skills can outperform individuals
with stronger aptitude in academic settings [77, 94]. To leverage
these benefits, educators incorporate metacognitive strategies into
their teaching methods to help students assess their own learn-
ing processes, thereby improving academic performance [15, 73].
Similarly, in psychology, metacognition is key to understanding self-
awareness and emotional regulation. It plays a significant role in
cognitive therapy, aiding individuals in identifying and challenging
negative thought patterns to promote mental well-being [106].

Despite its profound benefits, work exploring metacognition
within visualization remains limited. We posit that metacognition
can serve as a reflective layer for both visualization viewers and
designers, analogous to the students and educators described previ-
ously. For visualization viewers (e.g., students), this means reflecting
on their understanding of data encodings, trends, and insights, and
altering their analytic strategies as needed to enhance their ability
to interpret complex data. For visualization designers (e.g., educa-
tors, practitioners), this means reflecting on their understanding of
what they have designed to support and guide viewers’ interpretive
processes (theory of mind) [75]. We contend that visualization de-
signers should prioritize creating interfaces that facilitate metacog-
nitive practices for end-users, encouraging users to pause, reflect,
and adapt their strategies during data exploration. Visualization
tools that are designed to support various metacognitive tasks such
as reflection and regulation of data exploration, analysis, and in-
terpretation stand to benefit significantly from the integration of
these strategies.
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For instance, cognitive biases such as confirmation bias [66],
which significantly influence decision-making, are of recent inter-
est in visualization [27, 101]. While there are techniques aimed
at reducing these biases through guidance and prescriptive inter-
ventions [33, 100, 103], their effectiveness largely depends on the
accurate presentation of data, algorithms, and the user’s inten-
tions [17, 70, 79]. Metacognition, with its focus directly set on
recognizing and correcting errors in our thought processes, can
provide a self-driven approach to mitigating bias. This perspective
suggests metacognition not as a standalone solution but as a reflec-
tive layer that enhances user awareness of their cognitive processes
when interacting with visualizations. By fostering internal reflec-
tion alongside external aids, a metacognitive framework provides a
holistic method to address human biases. We position this work as
a starting point for ongoing theoretical development and practical
application in this emerging area, inviting further exploration and
refinement by the research community.

In this paper, we propose a novel metacognitive lens through
which to view past and future work in visualization. Our contribu-
tions are multifaceted:

• We surveyed 293 visualization papers and synthesize find-
ings from 21 of them, selected based on our inclusion and
exclusion criteria, to provide a detailed exploration of how
metacognitive practices may already be embedded within
visualization research.

• We augmented the van Wijk model [99] to serve as a frame-
work that integrates metacognitive components in the visu-
alization process. We apply this model to analyze the design
choices in two extant visual analytic systems.

• We identify gaps and opportunities for the novel metacog-
nitive framework to inform visualization practices and re-
search.

2 RELATEDWORK
We contextualize our work among areas of prior research in
metacognition. In the following sections, we describe the essen-
tial components of metacognition and discuss investigations of
metacognition in various settings.

2.1 Metacognitive Components
Metacognition refers to the cognitive processes involved in recog-
nizing and controlling one’s own thinking and learning [57]. This
process can be separated into three distinct components: metacog-
nitive knowledge, metacognitive skills, and metacognitive experi-
ences [30, 31, 47].

Metacognitive knowledge includes declarative knowledge about
cognitive processes, tasks, and strategies [47]. Consider an exam
taker who uses their knowledge of test-taking to identify the scope
of the exam and assess their personal familiarity with the topics in-
volved. A strategic test-taker allocates their study time by focusing
more on the subjects they find most challenging. By acknowledging
their strengths and weaknesses, they can optimize their preparation
approach, leading to improved learning outcomes. In the context
of visualization, metacognitive knowledge helps users assess their
understanding of data visualizations. For instance, a data analyst
might evaluate the clarity of a chart and identify gaps based on

their familiarity with different visualization techniques, allowing
them to choose and adjust the chart for clearer, more effective data
communication.

Metacognitive skills, also known as metacognitive monitoring or
regulation, involves the ongoing assessment of one’s understanding
and control over the learning process [115]. For example, an exam
taker engaged in effective monitoring might regularly test them-
selves on the material to gauge their mastery and identify areas
needing further review. They could adjust (i.e., control) their study
techniques based on these assessments – switching from passive
reading to active practice questions, or varying their study envi-
ronment to enhance concentration and retention. Metacognitive
skills can also be applied when users continuously evaluate their
understanding of visual data and their effectiveness in using it. For
instance, a data analyst might periodically review their interpreta-
tion of a complex data visualization to assess whether their insights
align with the data presented. They could adjust their analytical
approach by seeking additional data, re-evaluating their visualiza-
tions, or using different visualization tools to improve clarity and
accuracy. This ongoing self-assessment helps refine their analytical
skills and enhances the quality of their data-driven decisions.

Finally, metacognitive experiences encompass the individual’s
conscious perception and emotional responses during cognitive ac-
tivities [30, 115]. To continue with the example provided above, an
exam taker might experience confidence upon mastering a difficult
concept, encouraging them to tackle similarly challenging topics.
Conversely, feelings of frustration or confusion might prompt them
to seek additional resources or alter their study methods, perhaps
by taking more breaks or discussing difficult material with peers.
Similarly, in visualization, metacognitive experiences relate to users’
feelings and perceptions of their data interactions. For example, a
data analyst might feel satisfaction from successfully interpreting
a complex visualization, motivating further exploration, while con-
fusion or uncertainty may lead them to seek clarification, adjust
the visualization, or consult colleagues. These emotional responses
impact their approach and effectiveness in data analysis.

The relationship between metacognitive knowledge and expe-
riences is reciprocal [30]. Metacognitive experiences can enrich
metacognitive knowledge; for instance, the challenge felt during
problem-solving can transform into a recognized understanding
of one’s difficulties with such tasks [95]. Conversely, metacogni-
tive knowledge can come into play during metacognitive experi-
ences. For example, recalling one’s habitual struggles with problem-
solving can intensify the feeling of difficulty faced during such
tasks [95]. This interplay enhances our overall metacognitive aware-
ness, allowing for more informed and adaptive cognitive engage-
ments.

2.2 Metacognition and Learning
Advancements in metacognition research highlight the significant
impact that self-awareness of cognitive processes has on enhancing
learning outcomes. Research highlights that metacognition involves
not just the execution of tasks but also the monitoring, evaluation,
and planning of cognitive strategies, which are essential for ef-
fective learning [30]. This area of study delves into how students
become aware of their own knowledge base and exert control over
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their learning experiences, thereby improving their ability to solve
problems and think critically [90].

Several studies have explored metacognition within diverse edu-
cational settings, illustrating its significance in fostering essential
academic skills. For instance, a review study byWang et al. revealed
metacognition to be the most powerful predictor of learning [104].
Furthermore, Veenman et al. demonstrated that metacognitive skills
correlate strongly with academic performance, suggesting that
these skills can be taught and enhanced through targeted educa-
tional strategies. Similarly, Romainville et al. observed that higher
academic achievers not only exhibit enhanced metacognitive sen-
sitivity but also excel in organizing their learning strategies more
effectively [83]. To leverage these benefits, recent initiatives have
aimed to incorporate metacognitive principles into educational
systems. For instance, Azevedo et al. discussed the integration of
metacognitive tools within learning environments to foster self-
regulated learning through MetaTutor, which provides real-time
feedback and visual cues to aid learners in adjusting their learning
strategies [6]. Similarly, the nStudy software system supports the
tracking and enhancement of self-regulated learning processes on-
line, offering tools that enable learners to set goals, plan, monitor
progress, and reflect on their learning process [108].

Although metacognitive concepts have been extensively studied
within educational and cognitive psychology, their direct applica-
tion to the design and interpretation of visualizations has not been
thoroughly explored. This gap highlights a significant opportunity
for research and development in this field, promising to enhance
the functionality and impact of visual data representations.

3 METHOD
To understand the current research landscape of metacognition and
visualization, we conducted a systematic literature search focusing
on titles and abstracts to identify papers at the intersection of the
two fields. We used the VitaLITy [63] paper corpus to collect papers
from 6 visualization venues and extended the open-source scrapers
to collect papers from 5 metacognition venues. Figure 1 depicts the
paper selection process, which we describe in greater detail next.

Figure 1: Summary of paper selection process.

Visualization Venues. We utilized the dataset from the VitaLITy
system [5, 63] to collect titles and abstracts of papers from the

past 10 years from six venues related to visualization research –
IEEE VIS, TVCG, EuroVis, PacificVis, CG & A, and CHI. This search
yielded a total of 4,823 publications from January 1, 2014, and
December 31, 2023, inclusive. Inclusion was determined based on
the publication year as listed in the dataset from the VitaLITy
system [5, 63]. The first five venues are visualization-specific, hence
we assumed all papers contained within this scope were relevant to
visualization research. However, CHI covers more general human-
computer interaction research, so we added an additional screening
criteria to remove papers that did not contain words stemming from
“visual.” Next, we removed all papers that did not contain words
stemming from “metacognition” or “cognition,” which yielded 112
papers from visualization-specific venues and 61 papers from CHI
for further screening.

Metacognition Venues.We extended the open-source scrapers
provided by VitaLITy [5, 63] to collect titles and abstracts of papers
from the past 10 years from five venues related to metacognition re-
search – Metacognition and Learning, Memory & Cognition, Applied
Research in Memory and Cognition, Experimental Psychology: Learn-
ing, Memory, and Cognition, and Cognition. This search resulted in a
total of 5,431 publications between 2014-2023, inclusive. For journal
papers, inclusion was based on their formal assignment to volumes
and issues published within this date range. Next, we conducted a
keyword search using the term “visual” followed by a suffix (e.g., vi-
sualizations, visually) to filter out papers that merely mentioned the
term “visual,” such as those referring to “visual working memory,”
which do not pertain to our focus on data visualization research.
This approach yielded 120 papers for further screening.

Inclusion and Exclusion Criteria. Our first round of screening
was solely based on keyword search, resulting in a corpus of 293
papers. However, while papers at this stage may include words
stemming from “visual” and “cognition” in the titles and abstracts,
there are likely many papers within the corpus, e.g., that use visual
stimuli without a focus on visualization research or study cognition
without a focus on metacognitive factors. Thus, to determine if
the papers were truly relevant to metacognition and visualization
research, we conducted a comprehensive qualitative coding analysis.
Initially, three authors independently read the titles and abstracts
of 10 randomly selected papers from the corpus and determined
their relevance as a binary “yes” or “no,” then synthesized a set of
inclusion and exclusion criteria for the papers. After discussing and
agreeing on the relevance of these 10 papers, two authors repeated
this procedure with another 10 randomly selected papers. From this
process, we derived the following set of inclusion and exclusion
criteria (Table 1 & 2) to guide our coding of the papers. Table 1
presents the inclusion and exclusion criteria specific to visualization,
while Table 2 outlines the criteria specific to metacognition. Both
sets of criteria are applied to each paper during the review process
to assess relevance to both visualization and metacognition. Two
authors then independently coded the remaining 273 papers for
relevance. In case of disagreement, the two authors discussed and
resolved the issue or, if it could not be resolved, referred it to a third
author for a final decision.
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Table 1: Relevance to Visualization

Criterion Description

Inclusion
• The paper appears in a visualization related venue AND mentions “visual,” OR
• The paper involves:
– The creation, implementation, or evaluation of visual representations, such as graphs, charts,
maps, or other visual tools; OR

– The use or development of visualization techniques for the purpose of data analysis, interpretation,
or communication; OR

– The studies or experiments focused on visual perception, visual cognition, or the effectiveness of
different visualization methods.

Exclusion
• Papers that primarily focus on non-visual forms of representation (e.g., auditory, textual) where
visualization is not a central component of the study or discussion, OR

• Papers that mention visualization only in passing or treat it as a secondary aspect of the study,
without examining the visualization techniques, processes, or outcomes, OR

• Papers that involve the use of visualization software or tools but do not specifically focus on the
visualization aspect (e.g., focusing on software usability or computational efficiency), OR

• Papers that involve simple visual tasks (e.g., identifying colors, shapes, or basic patterns) with a
purpose other than visual perception (e.g., many studies on response times using simple shapes as
stimuli would fall under this exclusion criterion).

4 FINDINGS
The authors mutually coded 21 papers as relevant to metacognition
and visualization according to the inclusion criteria, achieving an
inter-rater reliability among two independent raters using Cohen’s
Kappa of 𝜅 = 0.51, suggesting moderate agreement [60]. The two
independent raters discussed any disagreements, having a third re-
searcher weigh in as needed, until a consensus rating was achieved
for all papers. Papers that were excluded at this stage included visu-
alization papers that discussed or studied cognitive processes, such
as perception (e.g., [26, 32, 42, 59]) andmemory (e.g., [23, 45, 68, 88]),
without any metacognitive reflection or regulation of those cog-
nitive processes; or, metacognition papers that used simple visual
stimuli (e.g., shapes or colors) as a mechanism to study performance
metrics (e.g., completion time, accuracy) [43, 68, 88]. Among the 21
papers reviewed, 16 are from visualization-related venues, including
8 from IEEE VIS, 6 from CHI, and 2 from TVCG, as shown in Table 3.
The remaining 5 papers are from metacognition-related venues: 3
from Memory & Cognition, 2 from Metacognition and Learning, and
1 each from the Journal of Applied Research in Memory and Cogni-
tion and Cognition. Table 4 shows an overview of the 21 reviewed
papers, including visual stimuli used, types of metacognitive skills
(adopted from [95]), methods used to measure these skills, and a
brief description of the study context. We present a summary of
our findings next, labeled F1-F5 for future reference.

F1: Only two papers explicitly mentioned metacognition. A
detailed examination of the 21 papers reveals a notable absence of
the term “metacognition,” with only two papers from metacogni-
tion venues explicitly including derivatives of “metacognition” in
their titles or abstracts and none from visualization venues. One
study investigated the impact of instructional visuals on students’

metacomprehension accuracy and cue-use for different types of
metacognitive judgments across four experiments [46]. Participants
were randomly assigned to either a text-only condition or a text-
and-image condition, where they made various judgments (test,
explain, and draw) for each text and completed comprehension
tests. They found that instructional visualizations (e.g., diagrams
of biological processes) harmed relative metacomprehension accu-
racy, as evidenced by self-reported performance, e.g., participants’
assessment of how well they felt they could draw the processes
described in the text [46]. Another paper demonstrated that com-
bining visualization with self-regulation metacognitive training –
where students are trained to self-observe and self-assess whether
they have accurately applied the visualizing strategy and to react
appropriately in order to improve the accuracy and clarity of their
drawings – effectively enhances learning from scientific texts [55].
The training involved three phases: self-observation, to recognize
strategic actions; self-assessment, to evaluate visualization effec-
tiveness; and reaction, to enhance visual clarity.

F2: Metacognition is not explicitly a focus in VIS. Our sys-
tematic analysis confirmed our intuition that metacognition is not
explicitly a focus in the visualization community. Aside from the
two papers that explicitly mentioned metacognition described pre-
viously, the remaining papers we reviewed indirectly addressed
metacognitive concepts. For instance, Wall et al. introduced the
concept of interaction traces, intended to promote user aware-
ness of bias in their analysis processes [100, 102]. Baumeister et
al. examined how different augmented reality display technologies
influenced task performance with a focus on self-assessment of
cognitive load [13]. Nowak and Bartram highlighted the need for
data interfaces that encourage reflection and provoke alternative
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Table 2: Relevance to Metacognition

Criterion Description

Inclusion
• The paper appears in a metacognition related venue AND explicitly mentions “metacognition,” OR
• The paper involves:
– Individuals stating their conscious understanding of cognitive aspects like their strategies (e.g.,
the optimality of solutions/strategies), reasoning abilities, decision-making, beliefs, or memory,
OR

– Individuals reflecting on their own performance or judgments (e.g., confidence levels or uncer-
tainties in answers) by estimating probabilities for certain outcomes, OR

– External tools or techniques that are designed to facilitate metacognition by influencing self-
awareness (e.g., showing something such as interaction traces to the user about their own process
or performance), supporting self-reflection and/or self-monitoring.

Exclusion
• Papers that elicit beliefs purely for gathering or measuring preferences or likelihoods (e.g., asking
participants about product preferences or likelihood of purchasing) without follow-up on why they
hold that belief or how confident they are, OR

• Papers that center on characterizing automatic cognitive processes (e.g., object recognition, recalling
positions, inhibitory control) without addressing how individuals are aware of, monitor, control, or
reflect upon these processes, OR

• Papers that assess the influence of visual representations on perceptual and cognitive biases affecting
data interpretation or the impact of visualization techniques on performancemetrics (e.g., completion
time, accuracy) without addressing self-regulated learning or cognitive monitoring, OR

• Papers that emphasize external factors such as immersive experience to increase cognitive engage-
ment (e.g., memory, attention) without involving users reflecting on or controlling their cognitive
processes, OR

• Papers that mention interviewing or gathering feedback from the participants without involving
self-reflection or self-monitoring of their cognitive processes.

Table 3: Distribution of 21 reviewed papers by venue. Visual-
ization venues are highlighted with a gray background, while
Metacognition venues are shown with a white background.

Venue Count

IEEE VIS 8
CHI 6
Memory & Cognition 3
TVCG 2
Metacognition and Learning 2
Journal of Applied Research in Memory and Cognition 1
Cognition 1
Total 21

interpretations to support sensemaking in risk assessments [69].
Nevertheless, these studies do not explicitly adopt metacognitive
terminology, signaling a low level of engagement with well-known
work or established research in this field. Engagement with key
theories about concepts such as “self-regulation” and “metacogni-
tive strategies” could provide valuable frameworks for analyzing
and enhancing the cognitive processes involved in visualization.
We explore how adopting such a metacognitive lens could aid these
efforts in Section 5.

F3: Presence of think aloud protocols. Among the 21 relevant
papers, two studies mentioned using a think aloud protocol in
their methodology, involving participants verbally expressing their
thoughts in real-time, thereby potentially providing insights into
metacognitive processes. The first study conducted a think aloud
session to observe how participants interpreted three unfamil-
iar visualizations [54]. This research aimed to develop a model
for novices’ sensemaking in information visualization, which in-
cluded five cognitive activities. Among these, two activities – con-
structing a frame and questioning that frame – specifically ex-
emplify metacognition by involving reflection on and evaluation
of one’s own thought processes. Integrating seminal works on
metacognition, such as Flavell’s concept of “metacognitive knowl-
edge” [30] or Schraw and Dennison’s “Metacognitive Awareness
Inventory,” [90] could further enrich the analysis by providing struc-
tured frameworks to interpret the verbalizations in think aloud
protocols. Another study explored how individual differences, ex-
periences, and cognitive load impacted the effectiveness of the
proposed “Soliloquy” interface. In this study, participants were
asked to articulate their thought processes while interacting with
the interface, providing insights into their cognitive engagement
with the tool [80]. Papers such as Hacker, Dunlosky, and Graesser’s
work [38] on metacognition in educational psychology could pro-
vide additional theoretical underpinnings that explain how and why
certain metacognitive strategies enhance learning and performance
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Table 4: Overview of the 21 reviewed papers, focusing on the specified types of metacognitive skills we adopted from [95], as
metacognitive experiences and knowledge are minimally involved. Papers marked with an asterisk (*) indicate those that did
not involve a user study; thus, measurement methods are not included in the table.

Visual Stimuli Skill Measurement Description

Bancilhon et al. [8] Icon arrays Self-awareness Self-rating Users rate their effort in completing a task.

Baumeister et al. [12] AR displays Self-awareness Self-rating Users rate their mental effort after a task.

Groß et al. [37] Representative icons Confidence Index estimate Users estimate the sugar content of various food
items both before and after given visual feedback.

Hall et al. [39] Visual charts Confidence, Task decom-
position

Self-rating Users rate their confidence on the previous task
block. Users describe the strategies they used when
completing the task.

Hatzipanayioti et al. [40] Spatial scenes Task decomposition Post-study survey Users describe the strategies they used after com-
pleting the task.

Jaeger et al. [46] Instructional visualiza-
tions

Confidence Judgment of performance Users judge how well they perform.

Jung et al. [49] Visual charts with alter-
native texts

Self-awareness Think-aloud Users verbalize their thought process during a task.

Karduni et al. [50] Uncertainty visualiza-
tions

Confidence Self-rating Users rate their confidence in the judgment both
before and after they view a data visualization.

Koonchanok et al. [52] Vis tools Task decomposition Prompts Users are prompted to incorporate their working
knowledge more frequently in queries when per-
forming exploratory analysis.

Lee et al. [54] Visual charts Task decomposition Think-aloud Users reflect on the frame which they form to make
sense of a given visualization.

Leopold & Leutner. [55] Visualized scientific texts Task decomposition Self-regulated learning Users receive metacognitive self-regulation learn-
ing training to study scientific texts.

Loksa et al. [58] Progression visualization Task decomposition On-demand prompts Users reflect on their strategies when seeking help
from instructors.

Nowak & Bartram [69] Vis tools Self-awareness Think-aloud Users verbalize their thought process and explana-
tion of actions taken in a task.

Robb et al. [81] Imagery feedback Task decomposition Interview Users describe their interpretation of the given feed-
back and how it inspires them to change their de-
signs.

Robey & Riggins. [82] Pictures Confidence Self-rating Users rate their confidence in their judgments.

Risha et al. [80] Vis tools Task decomposition, Self-
awareness

Pop-ups Enhancing users’ understanding of poetry by ex-
posing them to a visualized think-aloud of an expert
reading poetry.

*Sacha et al. [87] Vis tools Task decomposition, Self-
awareness

– Authors recommend developing systems that en-
able or encourage analysts to reflect on their anal-
ysis afterwards.

Shi et al. [92] Vis tools Self-awareness, Confi-
dence

Self-rating, Post-study
survey

Users rate their confidence in the final decision and
write down their reasons for the final decision.

Wall et al. [102] Vis tools Self-awareness Interaction traces Users are aware of their analysis process by view-
ing interaction history in real-time while exploring
data.

Wall et al. [100] Vis tools Self-awareness, Metacog-
nitive flexibility

Interaction traces Users gain an awareness of their analytic process
and biases by viewing the visualized interaction
sequences.

Zhao et al. [113] Visual feedback Self-awareness Interview Users describe their preferences with explicit rea-
sons after completing the task.

in such settings. By referencing these metacognitive frameworks,
researchers can specifically analyze how participants monitor and
adjust their thinking during think-aloud sessions, leading to a more
detailed understanding of cognitive processes. This application
could reveal subtle cognitive strategies or errors, allowing for more
precise data interpretation and the development of targeted inter-
ventions to enhance cognitive performance.

While only these two papers were identified from our inclusion
and exclusion criteria, a broader search for think aloud among the
entire corpus of 10,254 papers, disregarding other inclusion criteria,
yields 56 papers in total that mention use of this protocol in the
title or abstract. While these papers may contain further insight on
metacognitive processes and visualizations, we opted not to include
them all in our detailed review because many of the papers did not
primarily focus on metacognitive processes but rather mentioned



A Novel Lens on Metacognition in Visualization CHI ’25, April 26–May 01, 2025, Yokohama, Japan

the protocol in differing contexts that may not directly align with
the core scope of our survey. For instance, some papers identified
in the broader search discussed the use of the think-aloud protocol
in assessing user interaction with a new tool [48, 56, 78, 85]. While
they provide valuable insights into user behavior and cognitive
processes while interacting with the tools, their focus was primarily
on usability testing rather than exploring metacognitive processes
in visualization. Hence, the insights from those papers, although
relevant in a broader cognitive context, do not align closely with
the core objective of the present survey centered on metacognition
in visualization.

F4: Related papersmention confidence and strategy.Although
most of the related papers are not explicitly grounded in metacog-
nition, they frequently mention specific keywords that hint at
metacognitive elements through secondary measures. A partic-
ularly significant keyword found across 5 out of 21 studies is ‘con-
fidence.’ In these studies [39, 46, 50, 87, 92], participants are asked
to self-report their confidence levels regarding their judgments or
analyses, e.g., by using a slider on a 0–100 scale during a post-survey.
This recurring emphasis on confidence may imply an underlying
appreciation for self-awareness in evaluating analytical processes
and outcomes, which is a core aspect of metacognitive monitoring.
Incorporating Narens’ model of metacognition, which details the
formation of metacognitive confidence judgments, can clarify the
specific mechanisms by which these judgments influence cogni-
tive monitoring and control [64]. By understanding the criteria
and processes that underlie confidence assessments, researchers
may discern how confidence levels serve as indicators of the ef-
fectiveness and reliability of one’s cognitive monitoring, thereby
providing a more robust theoretical basis for interpreting these
self-assessments.

Additionally, although not numerous, four papers mention ‘strat-
egy.’ For instance, some studies such as [39, 40, 81] required partici-
pants to report their strategy or reasoning behind their choices after
completing tasks, intended to provide insights into the decision-
making behaviors of the participants. Another study develops an
intervention that involves displaying a flow chart of six problem-
solving stages, designed to prompt learners to reflect on their strate-
gies when seeking help from instructors in the context of program-
ming education [58]. To more effectively bridge these discussions
with metacognitive frameworks, referencing papers such as Zim-
merman’s work on self-regulated learning [114] would be beneficial.
Zimmerman’s model, which emphasizes planning, monitoring, and
evaluating as essential skills of self-regulation, could provide a valu-
able lens for analyzing how strategies reported in these studies
relate to metacognitive control processes. This theoretical frame-
work can explain why incorporating metacognitive prompts in
study methodologies could enhance learning outcomes by fostering
more effective self-regulation among learners.

F5: Studies seldom complete the feedback loop.Although some
relevant studies have analyzed participants’ self-reported strategies,
e.g., investigating the effects of personal differences on interpreting
various visual charts [39] or examining the influence of sensorimo-
tor encoding on participants’ reasoning about spatial scenes [40],
they typically conclude without “closing the loop” by providing
the opportunity for users to view, interact with, and adjust their
strategies accordingly. A notable exception includes the work by

Wall et al., which displayed real-time interaction traces by col-
oring points in a scatterplot that users had interacted with. This
approach prompted reflection after decisions were made by com-
paring the distribution of user interactions with the underlying
data distribution, thereby enabling participants to revise their deci-
sions accordingly [102]. Similarly, Robb et al. provided 12 designers
with feedback in response to their visualization designs and con-
ducted interviews to explore how visual feedback, as opposed to
text feedback, inspired changes in their designs [81]. The benefit of
closing the feedback loop is well-documented in educational and
metacognitive research. For example, Butler and Winne’s paper on
feedback and self-regulated learning emphasizes the importance
of timely and specific feedback in enhancing metacognitive aware-
ness and improving learning outcomes [20]. This process helps
learners adjust their cognitive and metacognitive strategies in re-
sponse to new information, which is critical for effective learning.
We explore the promising potential of integrating similar feedback
mechanisms into visualization studies in Section 7, highlighting
how such practices could significantly enhance user engagement
and learning.

5 METACOGNITIVE MODEL OF
VISUALIZATION

In the field of visualization, understanding how users interact with
and make decisions based on visual data is crucial [61, 105]. Estab-
lished cognitive frameworks, such as the decision-making models
proposed by Padilla et al.[71], and their recent applications by Ban-
cilhon et al.[7], have modeled these interactions effectively. Van
Wijk’s model [99] underscores the iterative nature of visualiza-
tion, where understanding evolves as the user interacts with the
data. Furthermore, the sensemaking process described by Pirolli
and Card [74] models how individuals transform raw data into
actionable insights. However, these frameworks primarily focus on
cognitive aspects without considering the critical layer of metacog-
nition, which involves self-awareness and self-regulation of these
cognitive activities. Integrating metacognition into visualization
processes can facilitate a deeper understanding of user interactions
with visual data, emphasizing how users monitor and regulate their
cognitive processes. It provides insights into the users’ awareness
of their own thought processes and their ability to adjust strategies
in real time, enhancing the design and utility of visualization tools.

In this section, we explicate how metacognitive components can
be integrated into the van Wijk operational model of the visualiza-
tion process. We chose to expand the van Wijk operational model
for its comprehensive approach to capturing the dynamic relation-
ship between perception, knowledge, and interaction [99]. Unlike
other models that may focus more narrowly on specific aspects
of visualization, such as data representation or user interaction in
isolation [14], van Wijk’s model encompasses the entire cycle of
visualization interaction, from data processing to knowledge forma-
tion and back to data interaction. This cyclical and iterative nature
aligns closely with the principles of metacognition, which empha-
size continuous monitoring, evaluation, and adaptation of cognitive
processes. Additionally, we outline several metacognitive strate-
gies designed to improve users’ interpretation and decision-making
with visual data, as shown in Figure 2. By embedding metacognitive
strategies into this model, we aim to provide a framework that not
only describes how users interact with visual data but also how they
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reflect on and regulate their own thinking during these interactions.
This discussion is intended to join metacognitive concepts with an
existing operational model, marking a progressive step in under-
standing holistic human cognitive processes. Our goal is to show
how a metacognitive lens can inform and improve visualization
design, which we discuss further in Section 7.

5.1 Expanded van Wijk Model
Van Wijk conceptualizes the ‘user’ in terms of Perception and Cog-
nition (P), Knowledge (K), and Interactive Exploration (E). The user
perceives the image (I) and engages with the visualization through
various available manipulation techniques, referred to as the speci-
fications (S) in Figure 2. Green et al. [36] have expanded this model
by adding two directional arrows, depicted in green in Figure 2.
The arrow from P to E underscores the critical role of perception
and perceptual logic in facilitating active exploration, while the
arrow from E to K highlights how an iterative interaction cycle
enriches knowledge and reasoning. As users explore and learn, this
new knowledge shapes and directs further exploration, integrating
Perception, Knowledge, and Exploration as interdependent cogni-
tive processes. We further augment this model with metacognitive
components, depicted in blue.

When the user perceives the image (I), early cognitive and per-
ceptual (P) processes such as selective attention and categorization
are activated [36], potentially triggering metacognitive experiences
(Figure 2, (a)). These experiences can include subjective feelings like
a sense of familiarity or the realization that one has misunderstood
a visualization. Additionally, they may involve implicit cues that in-
form us about our cognitive processes, such as ‘processing fluency’
cues that indicate how swiftly a memory is recalled [1, 67, 95]. A
self-loop labeled with dM/dt to metacognitive experiences repre-
sents changes in metacognitive experiences over time, indicating
how users’ reflections and reactions to the visual data evolve as
they interact more deeply with the content.

The perception process enriches the user’s knowledge base (K),
which encompasses both the initial knowledge and insights gleaned
from the image [99], along with new knowledge generated through
reasoning and problem-solving [36]. This involves metacognitive
knowledge (Figure 2, (b)) – an understanding of their cognitive
strategies and processes. This knowledge includes recognizing the
types of cognitive tasks at hand and understanding which cognitive
strategies might be most effective in navigating them. For example,
a viewer might identify that analyzing complex data requires a
strategy of breaking information into smaller, manageable parts. As
viewers acquire metacognitive knowledge from initially perceiving
and interpreting visualizations, this foundational understanding
paves the way for deeper engagement. Just as with metacognitive
experiences, there is a self-loop for metacognitive knowledge labeled
with dM/dt that indicates continual adjustments and refinements
in the viewer’s metacognitive knowledge over time, emphasizing
its dynamic development through interaction with visual data.

As users accumulate knowledge, they might decide to adjust
the visualization’s specifications to explore the data further, en-
gaging both P and K in a dynamic cognitive process [36]. During
this phase, viewers may likewise utilize sophisticatedmetacognitive
skills (Figure 2, (c)) such as monitoring and controlling their own
thought processes as they interact with the visualization. Moni-
toring and control are pivotal metacognitive abilities that enable

individuals to evaluate and steer their own cognitive processes [95].
Monitoring involves assessing one’s own thinking, encompassing
skills like self-awareness and adjusting confidence levels. In con-
trast, controlling cognitive processes involves actively regulating
and directing one’s thoughts, decisions, and behaviors to achieve
specific goals. This often includes managing attention, inhibiting
distractions, and applying strategies to optimize problem-solving
or task performance.

For instance, cognitive monitoring in visualization might entail
recognizing one’s mental state and how it influences their cogni-
tive processes, crucial for setting clear goals and intentions such
as, “What insights do I hope to gain from analyzing this dataset?”
This awareness is critical as viewers interact with visualizations to
understand data deeply and control the output of that thinking to
achieve specific goals. Confidence relates to assessing one’s capabil-
ity in handling tasks [109], such as determining, “How confident am
I that my interpretation is correct?” Properly calibrated confidence
helps objectively evaluate performance and align it accurately with
one’s abilities. For example, they may evaluate howwell they under-
stand the information presented and whether they are able to draw
accurate conclusions based on the visual data. A self-loop labeled
with dM/dt indicates the ongoing development of metacognitive
skills in this framework.

5.2 Metacognitive Strategies
We briefly discuss a few metacognitive strategies, depicted in

orange in Figure 2 within the expanded van Wijk model. While this
is not an exhaustive list, these strategies, when effortfully engaged
by visualization viewers, can be used to enhance the way they
interpret and make decisions with visual data.

Self-explanation. Learning involves the integration of new in-
formation into existing knowledge. Generating explanations to
oneself, known as self-explaining, facilitates this integration pro-
cess. Self-explanation has been extensively studied in the fields of
learning and cognitive sciences, and considerable research under-
scores its effectiveness in enhancing understanding and problem-
solving skills [2, 21, 22, 107]. For instance, a study by Chi et al. [22]
demonstrated that students who explained concepts to themselves
understood better than those who did not. This benefit could be
equally significant for viewers of visualizations. In a practical sce-
nario, an analyst reviewing a line graph showing changes in con-
sumer behavior over time could use self-explanation to enhance
their understanding. As they identify trends or outliers, they could
self-explain such as “I think this pattern exists because there is an
underlying relationship between spending on marketing in general
and web traffic,” or “I think this peak represents a significant impact
from a recent promotional campaign” based on their knowledge of
recent market changes or promotional campaigns. This practice
could encourage deeper engagement with the data and help solidify
learning. It can also foster critical thinking by requiring the viewer
to justify their interpretations, which can lead to more accurate
and insightful data analysis.

Self-questioning. Different from self-explanation, which focuses
on articulatingwhat one already knows or believes, self-questioning
is oriented towards exploring unknowns, challenging existing
knowledge, and seeking new information [35]. This approach is
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Figure 2: An adaptation of the visualization process defined by van Wijk [99], augmented with metacognitive factors.

well-supported in the educational context, where questioning strate-
gies have been proven to promote deeper understanding and en-
hanced learning outcomes [51]. In the realm of data visualization,
self-questioning could play a crucial role by encouraging viewers to
actively formulate questions that guide their exploration of visual
data. As viewers interact with a visualization, they might pose ques-
tions such as “What anomalies are present in the data?” or “What
might be causing this trend or anomaly in the data?” Such inquiries
not only have the potential to provoke deeper engagement with
the data but also drive the discovery of insights that might not
be immediately apparent. By continuously posing and addressing
these questions, viewers can ensure a comprehensive examination
of the data, thereby enhancing the quality of their analyses and the
validity of their conclusions. This dynamic process of questioning
and reevaluating may help to foster a critical mindset, crucial for
effective data-driven decision-making.

Self-assessment. Self-assessment, or self-evaluation, has been
demonstrated to contribute significantly to academic success, espe-
cially when compared to students who do not practice it, supported
by findings in educational psychology [18, 34, 84]. Unlike strate-
gies such as self-explanation and self-questioning, which focus on
articulating and querying one’s understanding, self-assessment em-
phasizes evaluating the reliability of one’s own conclusions. In the
field of data visualization, self-assessment can enables analysts to
critically assess their interpretations and the underlying data. As
viewers navigate through data visualizations, they can regularly as-
sess how certain they feel about the accuracy and reliability of their
interpretations. For instance, after identifying a trend or anomaly in
the data, a viewer might rate their confidence in their explanation or
prediction related to that observation, asking themselves questions

like, “How confident am I in the conclusions I am drawing from this
trend?” or “What is the likelihood that my interpretation of this
data is accurate?” If they find their confidence level is low in certain
areas, they might decide to revisit the data, consider alternative
interpretations, or consult additional sources. This practice may
help to validate data analysis accuracy and enhance understanding
of personal biases and limitations. Effective self-assessment can
strengthen analytical skills, improve decision-making reliability,
and support professional growth by fostering continuous critical
reflection and adaptation to complex information [84, 93].
6 EXAMPLES

In this section, we demonstrate how the expanded van Wijk
model from Section 5 can be used to provide a novel lens with
which to assess extant visual analytic systems. We analyze the
ways in which two systems, Lumos [62] and Soliloquy [80] inte-
grate metacognitive concepts using the expanded van Wijk model.
Metacognitive strategies are highlighted in orange, and the spe-
cific metacognitive components associated with these strategies
are indicated in blue, in line with Figure 2. We chose to analyze
Lumos [62] (the system used in experiments by Wall et al. [102])
and Soliloquy [80] from our set of coded papers as they both pro-
vide visual analytic interfaces that can demonstrate a breadth of
metacognitive techniques.
6.1 Lumos

While it does not use the language of metacognition, the Lu-
mos [62] system is designed to enhance metacognition through the
lens of bias awareness by fostering active self-monitoring and self-
reflection of a user’s interaction traces. This system leverages both
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in-situ and ex-situ visualization techniques to foster continuous
metacognitive engagement and reflection.

In its in-situ configuration, Lumos tracks how users interact with
visual data representations such as bars, lines, points, and strips.
It leverages the unused visual channel of color on a gradient from
white to blue to visually represent the frequency of interactions
with data, with a darker blue indicating more frequent interactions,
andwhite indicating none. This immediate visual feedback is crucial
for promoting the metacognitive skill (Figure 2, (c)) of real-time self-
monitoring For instance, a mouseover on a visualization element in
the visualization canvas (Figure 3, (E)) highlights this point with a
corresponding shade of blue, depending on the interaction intensity.
This feature enhances the metacognitive skill (Figure 2, (b)) of self-
awareness, by making users conscious of their focus areas, as well
as encouraging a balanced approach to data analysis by visually
cueing areas of potential neglect or overemphasis. Similarly, the
Attribute Panel uses the same white-to-blue color scale to indicate
the level of interaction with different data attributes (Figure 3, (B)).
This consistent visual coding across different components of the
interface supports users in developing an intuitive understanding
of their analytic behaviors over time, supporting another critical
metacognitive skill (Figure 2, (c)) known as self-assessment. This en-
ables users to evaluate their engagement and adjust their analytical
focus dynamically, ensuring more effective data exploration and
decision-making processes.

In addition to these in-situ mechanisms, Lumos incorporates
ex-situ visualizations to further enhance metacognitive processes.
The Distribution Panel (Figure 3, (G)) allows users to compare their
interaction patterns against a set of predefined target distributions,
such as Proportional, Equal, or Custom baselines. For example, in a
dataset of job applicants with diverse gender identities (e.g., 50%
identifying as male, 40% as female, and 10% as nonbinary), a pro-
portional target might reflect the actual demographic distribution,
encouraging users to align their interactions accordingly. Lumos
visually contrasts the observed user behavior with these target dis-
tributions, using a color-coded system (red to green) on the attribute
cards to signify how closely user actions match the expected distri-
bution. Redder hues indicate significant deviations, prompting users
to engage themetacognitive skill of self-reflection on potential biases
or oversights. This acts as a trigger for self-assessment, encouraging
users to critically evaluate their performance. Conversely, greener
hues suggest alignment with the target distribution, reinforcing
effective analytic practices. This setup not only aids in the devel-
opment of metacognitive skills (Figure 2, (c)) like critical thinking
and adaptive learning but also enhances metacognitive knowledge
(Figure 2, (b)) by providing users with feedback that informs them
about their analytical efficacy and areas for improvement.

By providing multiple layers of feedback, Lumos effectively inte-
grates metacognitive components into the data exploration process.
This design not only aids users in becoming conscious of their
interaction patterns but also empowers them to self-regulate and
adapt their analytical strategies in response to real-time insights
about their behavior. This approach is fundamental in helping users
develop deeper metacognitive skills, such as self-awareness and

Figure 3: An example of Lumos adapted from [62], shows
a user’s interaction traces using both in-situ ((B) Attributes
Panel, (E) Visualization Canvas and (F) Details View) and
ex-situ ((G) Distribution Panel) visualization techniques.

Figure 4: An example of Soliloquy adapted from [80], features
(A) shading to denote current attention of the expert reader,
(B) ordering of lines to illustrate recursive reading patterns,
(C) highlighting of specific words or phrases that trigger
thoughts, and (D) verbalized thought displayed as popups
with optional audio playback.

self-regulation, which are essential for effective and unbiased data
analysis.
6.2 Soliloquy

Risha et al. present Soliloquy, an interface designed to visualize
the thought processes of an expert as they read and interpret a
poem to novice readers, aimed at enhancing their understanding
of expert cognitive strategies to improve their comprehension of
poetry [80]. Soliloquy is inspired by the think-aloud instructional
strategy commonly used in educational settings, where an instruc-
tor or student vocalizes while performing a task, such as reading
a poem, to model the process and provide a worked example for
others.

It begins simulating the think-aloud process by bolding each
word to indicate the expert reader’s current focus, guiding novices
on how to pace their reading and what to emphasize (Figure 4,
(A)). Furthermore, Soliloquy incorporates text shading animations
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(Figure 4, (B)) to simulate recursive reading patterns, which are
typical of experienced literature and poetry readers who often re-
read sections, posing questions, and forming connections [80]. This
recursive approach helps novices understand that deeper reading in-
volves revisiting and reflecting, not just linear progression through
the text.

Critical moments of insight, such as forming an idea, posing
a question, or making a connection, are captured in popups (Fig-
ure 4, (D)) which convey the expert reader’s thought. The word
or phrase that triggers the thought is highlighted, linking the text
to the thought process visually (Figure 4, (C)). This feature pro-
motes self-reflection as novices compare their thoughts with the
expert’s, enhancing themetacognitive skill (Figure 2, (c)) ofmetacog-
nitive awareness. By observing the expert’s insights, novices are
encouraged to engage in self-assessment, evaluating their own un-
derstanding and identifying areas where their interpretations may
differ, thus recognizing gaps in their comprehension.

The integration of metacognitive components is a key aspect of
Soliloquy’s design. This interface actively involves novices in devel-
oping metacognitive skills by enhancing their awareness of their
own reading processes. As novices observe the expert’s focused
and recursive reading, they are introduced to effective reading tech-
niques, learning to monitor their own comprehension and adapt
their strategies accordingly. By allowing novices to witness the
real-time cognitive processes of an expert, the popups serve as trig-
gers for metacognitive engagement, prompting novices to reflect
on their understanding of the poem and how their thoughts align or
differ from the expert’s. This reflection is essential for developing
the metacognitive skill (Figure 2, (c)) of self-awareness. Soliloquy
thus improves poetry comprehension and serves as a powerful tool
for teaching and reinforcing metacognitive strategies within an
educational context, helping learners to become more reflective
and effective readers.

Overall, by explicitly highlighting metacognitive features in sys-
tems like Lumos and Soliloquy, we demonstrate how visual analyt-
ics tools can go beyond facilitating task performance to actively
fostering self-awareness, reflection, and adaptive learning in users.
These examples illustrate the transformative potential of incorpo-
rating metacognitive components, enabling users to become more
thoughtful and effective in their analytical or interpretive processes.
This focus underscores the importance of designing systems that
not only support task-specific outcomes but also cultivate broader
cognitive and metacognitive skills.
7 NEXT STEPS: HOW IS A METACOGNITIVE

FRAMEWORK HELPFUL FOR FUTURE
VISUALIZATION RESEARCH?

In this paper we posit that the exploration of metacognition in
visualization can profoundly enhance our understanding of how
users interact with visual data. This insight is particularly benefi-
cial for designers who create these visualizations, and researchers
who evaluate effects of visualization techniques. In section 5.2, we
outlined metacognitive strategies. Here, we expand on actionable
methods for researchers and designers to enhance users’ metacog-
nitive abilities. Designers may rely on intuition when making deci-
sions; however, our model can elucidate why certain design choices
are effective and help designers make informed decisions that are

grounded in a deeper understanding of user interactions and cogni-
tive processes. By integrating these guidelines, designers can better
predict how users will interact with and benefit from visual data,
ensuring that visualizations are both functional and insightful. For
researchers, these guidelines offer a framework for investigating the
impact of metacognitive strategies on visualization efficacy. By ex-
ploring how these strategies influence user behavior and cognition,
researchers can contribute to a more nuanced understanding of
the relationship between user and visualization, ultimately driving
advancements in visualization technology and methodology.

7.1 Metacognition for Visualization Designers
In this section, we discuss some strategies that visualization design-
ers might use when designing systems that promote metacognitive
engagement. Building on Section 5.2 and Figure 2, a designer’s goal
should be to slow down the analysis and decision making processes,
promoting self-reflection. How might systems support strategies
like self-explanation, self-questioning, and self-assessment? In this
section, we demonstrate example metacognitive interventions that
visualization designers might consider.

Figure 5: An ex-
ample of prompts
in Bannert and
Menglkamp’s
work [10].

Prompting Users to Check Their
Work. Prompting is a form of in-
structional scaffolding designed to sup-
port self-regulated learning in educa-
tional settings [72]. This is typically
achieved by asking learners relevant
questions or providing explicit instruc-
tions [9]. Enhancing reflection in visual-
ization should similarly involve strate-
gically prompting users to examine
their own thought processes, decisions,
and strategies when appropriate. This
could range from simple features that
prompts users by asking “Are you sure?”
to prompt reflection before finalizing a
data-driven decision, to more complex
interventions. For instance, in Bannert
and Menglkamp’s work [10], prompts
were provided after each navigation

step students made in a hypermedia learning environment about
operant conditioning. The learning environment included both rel-
evant and irrelevant pages for the learning goal. Students were
prompted to select one or more reasons for their page changes in
a pop-up window, which included options like orientation, goal-
setting, planning, and control of comprehension, as depicted in
Figure 5 from [10].

While these interventions can foster deeper cognitive engage-
ment, it is equally important to balance them with the natural
exploratory flow of the users. Overly frequent or poorly timed
prompts could disrupt user focus, causing frustration or breaking
the continuity of thought. One solution is self-directed prompts, as
developed by Bannert et al. [11]. When configuring self-directed
prompts, learners can decide when to receive the prompts dur-
ing the learning process and decide the sequence of reasons for
their learning activities when being prompted (e.g., planning, goal
specification, and orientation) [72], which supports feelings of au-
tonomy [25, 86]. When implemented thoughtfully, these features
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can encourage more deliberate analysis and prevent oversight, ulti-
mately fostering cognitive growth over time. By embracing both re-
flective practices and user autonomy, visualization tools can evolve
beyond mere data interpretation aids to become platforms for sus-
tained cognitive development.

Figure 6: An ex-
ample of degraded
fonts in Hullman’s
work [44].

InducingVisualDifficulties. Interact-
ing with an information visualization is
akin to engaging in a learning process,
where drawing inferences from the vi-
sualized data is part of a broader ac-
tivity of assimilating new information
and integrating it with existing knowl-
edge. Typically, the evaluation of visu-
alization effectiveness is guided by the
cognitive efficiency model, which mea-

sures how well a graph enhances the speed and accuracy of pattern
recognition, as noted by Larkin and Simon [53]. However, a sub-
stantial body of psychological research on learning from graphs
and diagrams suggests that introducing desirable visual difficul-
ties – tactics designed to stimulate more intense cognitive activity
through specific alterations in the visual representation – can sig-
nificantly enhance learning [16]. This approach is supported by
Hullman et al., who argue that such challenges promote crucial ele-
ments of learning, specifically the active processing of information
and engagement with the content [44].

Active processing involves additional cognitive operations aimed
at deepening understanding, as depicted in the complementary
metacognitive container on the right in Fig. 2. Hullman et al. high-
lighted two primary forms of active processing: self-explanation
and the manipulation of internal visualizations. Some prior work
supports the integration of visual difficulties that prompt self-
explanationwithin visualization. For example, Natter and Berry [65]
conducted two experiments on the active processing of risk infor-
mation graphs. In these studies, participants engaged in reflective
tasks such as representing risk sizes on a bar chart and answering
reflective questions, which not only increased their satisfaction
with the information but also led to more accurate judgments and
estimates. To implement self-explanation facilitation, textual or task
prompts have proven effective in reliably inducing self-explanation
when interacting with visualizations [24]. On the topic of manipu-
lating internal visualizations, cognitive psychologists emphasize the
importance of this technique in aiding comprehension. Trafton et
al. [97] observed that experts who formed and compared schematic
internal representations with external visualizations were better
able to identify gaps in their knowledge. Engaging viewers with
internal visualizations can be effectively facilitated by asking them
to predict the workings of a visualized process before they examine
the actual visualization [44]. This metacognitive strategy, similar
to using reflective thinking prompts for self-explanation, promotes
a more profound understanding by encouraging viewers to reflect
and question actively the visual data presented. This method fosters
a metacognitive environment where viewers are not just passive
recipients of information but are actively involved in the cogni-
tive unraveling of the data, thereby enhancing their learning and
retention of complex information.

Another approach to implementing visual difficulties is grounded
in disfluent learning experiences, which stem from the metacogni-
tive judgment of fluency. This judgment falls under metacognitive

knowledge in the Fig. 2, specifically within the category of knowl-
edge about one’s cognitive conditions. Fluency is defined by psy-
chologists as a metacognitive judgment that assesses how smoothly
information processing seems to occur [3]. For example, a previous
study found that while degraded fonts (e.g., as described in Figure 6
from [44]) are perceived as more effortful to read, they can actually
enhance comprehension and memory, by prompting viewers to
avoid mental shortcuts and heuristics [4]. Additionally, introduc-
ing perceptual disfluency, such as using complex graph legends,
can benefit graph viewers by heightening their awareness of the
effort they are exerting [91]. This is because perceived disfluency
encourages viewers to engage in systematic, analytical reasoning
instead of relying on automatic or heuristic processes [4]. This
concept is similar to how introducing “difficulties" into graph com-
prehension tasks can make viewers aware of gaps in their mental
models, motivating them to invest more effort into understanding
the information [44].

Figure 7: An example of us-
ing color encoding to indi-
cate interaction intensity in
Lumos [62], promoting aware-
ness of potential biases.

Closing Feedback Loops
in Vis. From the per-
spective of metacognition,
an incomplete feedback
loop (F5) represents a
missed opportunity for
deeper metacognitive en-
gagement, which is criti-
cal for nurturing an en-
vironment of continuous
learning and improvement.
Specifically, the failure to
provide feedback prevents
participants from reflect-
ing on and refining their
strategies based on their
self-assessments. Offering
such feedback in visual-
ization tools could sig-
nificantly enhance partic-

ipants’ understanding of their cognitive processes, elevate self-
reflection, and sharpen critical analysis skills. For instance, Wall
et al. enabled participants in a controlled study to revise decisions
after viewing interaction traces that showed how they allocated
time and attention across the data, which can promote conscious
reflection of one’s analysis process [102]. Similarly, Loksa et al. ob-
served increases in productivity and programming self-efficacy by
enabling learners to adjust their strategies based on explicit and
on-demand prompts for self-reflection when seeking help from
instructors [58]. Systems can be designed with these features in
mind, such as Lumos [62], which provides real-time feedback by
capturing and displaying users’ interaction history with data by
using the color channel in the visualization to promote awareness
of potential biases in the data exploration process as depicted in
Figure 7. This practice can not only improve task performance but
also evolve individuals’ learning processes over time, contribut-
ing to more effective and insightful visual data exploration and
interpretation.
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However, it is important to recognize that the necessity and
impact of such feedback loops can vary depending on the nature
of the research or the objectives of the visualization tool. In some
contexts, such as studies exploring the effects of personal differ-
ences on interpreting various visual charts [39] or examining the
influence of sensorimotor encoding on spatial reasoning [40], the
immediate closure of feedback loops may not be essential. Here,
the primary goal may be to observe and measure natural cogni-
tive and behavioral responses without the influence of feedback,
to understand baseline performances and intrinsic processes. For
more discussion on howmetacognition might influence researchers’
goals, see Section 7.2.

7.2 Metacognition for Visualization Researchers
The novel lens of metacognition in visualization opens up a number
of promising avenues for future research. We envision some poten-
tially fruitful outcomes could include improved decision-making
accuracy and efficiency by better understanding and leveraging how
users become aware of and manage their cognitive processes during
data analysis. Furthermore, as with metacognitive skill training in
the learning sciences [110], the development of metacognitive skills
in visualization may lead to transferable skillsets. Here we outline
key future research opportunities that explore these aspects.

Adaptations to Existing Evaluation Methods. Integrating
metacognitive measures into existing evaluation methods in vi-
sualization has potential to enhance the effectiveness and relevance
of these assessments. By incorporating metacognitive elements, re-
searchers can gain deeper insights into the cognitive strategies that
users employ, the decision-making processes they follow, and the
biases that may influence their interpretations. One possible adap-
tation is the incorporation of metacognitive prompts within the
evaluation framework. These prompts can be strategically placed
during tasks to encourage users to reflect on their thought processes
as they interact with visual data. For example, after presenting a
complex graph or chart, evaluators might ask participants to de-
scribe what strategies they used to interpret the data and what
information they found most or least reliable. This approach not
only helps in understanding how users process visual information
but also in identifying areas where their understanding may falter.
Similarly, researchers might consider the use of think-aloud pro-
tocols (F3), where participants verbalize their thought processes
while engaging with visualization tools. By analyzing these verbal-
izations, evaluators can identify patterns in how different types of
users approach problem-solving and decision-making in real-time,
adjusting their strategies based on the feedback they receive from
the visualization. Additionally, the integration of metacognitive
assessment could be tailored through pre- and post-task question-
naires that measure changes in understanding and approach. These
questionnaires should also gauge users’ confidence (F4) in han-
dling the visual tasks, assessing how users’ perceptions of their
own knowledge and abilities evolve as they interact with visual
data. These questionnaires can assess how users’ perceptions of
their own knowledge and abilities evolve as they interact with vi-
sual data. This data could be invaluable for designing visualizations
that are not only informative but also tailored to improve user
competence and confidence.

Development of Adaptive Visualization Systems. Future re-
search could examine the role of metacognitive flexibility [95] in
visualization – the ability to change one’s cognitive strategies based
on new information or feedback. In educational and cognitive sci-
ences, tools such as the Metacognitive Awareness Inventory (MAI)
have been used to measure aspects of metacognitive awareness
and control that could inform adaptive system design. For example,
Schraw and Dennison’s MAI could be adapted to assess how users
reflect on and regulate their cognitive activities while interacting
with visualizations [90]. This insight could directly influence de-
velopment of adaptive visualization systems capable of modifying
visualizations in real-time, tailored to a user’s metacognitive state.
Previous work has already laid the groundwork for adaptive sys-
tems in visualization. For instance, Zhang et al. introduced AdaVis,
an adaptive visualization recommendation system that utilizes ma-
chine learning techniques to suggest one or multiple appropriate
visualizations based on data context [111]. Additionally, Toker et
al. have advocated for adaptive information visualization systems
that personalize displays according to individual user needs such
as perceptual speed and personal preferences [96]. Building on this
foundation, integrating metacognitive concepts into the design of
adaptive visualization systems could monitor how a user interacts
with a set of visualizations and detect patterns such as prolonged
engagement without progress or frequent switching between data
points without drawing conclusions. If such patterns are recog-
nized, the system could intelligently suggest a shift in visualization
– for instance, changing from a complex scatter plot to a simpler
bar chart or from a static graph to an interactive one that allows
for manipulations like zooming or re-scaling. By integrating the
concept of metacognitive flexibility, this adaptive approach ensures
that visualization tools are not only more responsive but also more
intuitive, enhancing user engagement and insight generation from
the data. This approach ensures that visualization tools cater di-
rectly to the evolving needs of their users, promoting efficient data
exploration and more informed decision-making.

Integrating Metacognition for Cognitive Bias Mitigation. Fu-
ture research could study the usage of metacognition to combat
cognitive biases, such as confirmation bias or anchoring, which
can significantly affect the outcomes of data analysis by leading
analysts to make decisions based on skewed perceptions rather
than objective data [98]. By increasing metacognitive awareness,
users can become more conscious of their own thoughts and biases,
prompting users to self-correct their initial assumptions. Promot-
ing metacognition can possibly be a simple yet effective method
to reduce users’ biases. Wall et al. observed increased awareness
of potential unconscious biases, by enabling view interaction his-
tory in real-time while exploring data and in a summative format
after a decision has been made in an interactive scatterplot-based
visualization tool [102]. This approach not only highlights biased
patterns in data interaction but also prompts users to reconsider
their analytical strategies. In a related study, the author proposed
metrics to quantify behavioral indicators of bias, such as data point
coverage metric which measures the user’s attention to the data
points, that could be integrated into visualization systems to help
users recognize and adjust for cognitive biases during their analy-
ses [100].
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This integrated approach, where metacognitive practice is cou-
pled with effectively designed visualization tools, enhances the
reflective capabilities of users, making them more adept at recog-
nizing and correcting biases. Thus, while metacognition alone may
not solve all issues related to bias in data analysis, it serves as a vital
component in a multi-layered strategy that includes good design
practices and appropriate tool support. These elements collectively
contribute to a more informed and unbiased analytical process, un-
derscoring the value of metacognition as part of a comprehensive
solution.

Collaborative Metacognitive Strategies in Vis. Collaboration in
visualization is fundamentally a social process that involves efforts
in parallelization, discussion, and consensus building [41]. Incorpo-
rating collaborative metacognitive strategies in visualization can
significantly improve this process by enhancing the effectiveness
of distributed teams working on complex data analysis tasks. For
example, the work by Sarvghad et al. [89] highlighted a common
challenge in collaborative data analysis: understanding the scope
of investigation already covered by team members and identifying
what still needs to be explored. Traditional visualization histories,
often presented as sequential lists, do not sufficiently convey the
depth and breadth of analysis, especially in complex datasets with
multiple dimensions. This limitation can hinder effective collabo-
ration and strategic planning in distributed teams. To address this,
they introduced a “dimension view” to visualize the history of data
exploration from a dimension coverage perspective. This strategy
allows analysts to see not just what has been done, but how it
relates to the entire dataset’s dimensional structure. By providing a
visual representation of which dimensions have been explored and
to what extent, this view supports a more strategic and informed ap-
proach to further analysis. Such integration in visualization fosters
a more synchronized and reflective approach to distributed data
analysis, which not only enhances the efficiency and effectiveness
of collaborative efforts but also deepens the analytical acumen of
the team as a whole.

8 LIMITATIONS
We scoped our review to work done in the last ten years from a total
of 11 metacognition- and visualization-related venues. This search
is limited in at least three ways: (1) the scope of time and venues, (2)
searches were limited to titles and abstracts only, and (3) the initial
keyword-based search strategy can miss relevant work. While we
believe our review covers a broad and deep enough space to provide
useful insights in this paper, we emphasize that this framework is
intended as a starting point for further exploration rather than a
definitive model. A more thorough future review could include full
text search of all 38 visualization venues covered by the VitaLITy
corpus [5, 63] and explore a similar scope of metacognition venues.

Older and upcoming research was excluded from scope but may
nevertheless help fill in the gap of research at the intersection of vi-
sualization and metacognition. For instance, certain pivotal studies,
like the 2011 paper on visual difficulties to engage users in cogni-
tively demanding activities such as self-explanation to facilitate
their ability to monitor and evaluate their understanding [44], were
excluded from our current corpus due to the constraints on the year
range.

Similarly, our keyword-based search covered cognitive and
metacognitive keywords, however, relying solely on titles and ab-
stracts introduces two potential limitations. Firstly, papers might
seem relevant by mentioning terms such as “confidence assessment”
in their abstracts without engaging with discussion of self-rating
in the full text (e.g., [50]), and secondly, some papers may have
relevant content in the full text of the paper, but not in the title or
abstract fields, or may have used other types of keywords which
were scoped out of our review. For example, the KTGraph system
by Zhao et al [112] describes an interface that aids analysts in ex-
ternalizing their investigations. It features capabilities like tagging
any element of the graph to embed meta-information about their
thoughts, such as highlighting promising areas for further inves-
tigation or noting tasks to complete, thereby enhancing analysts’
awareness of their analysis coverage.

9 CONCLUSION
In this paper, we introduced a novel metacognitive lens through
which to consider visualization research and practice. From a large
corpus of papers from both metacognition-related and visualization-
related venues, we identified 21 relevant papers that lie at the inter-
section of the two fields. We observe that among these papers, (i)
they rarely explicitly mention “metacognition” (F1 and F2), (ii) in-
stead integrating some metacognitive measures into study designs,
e.g., by having users reflect on confidence and strategies (F4) or
using think aloud protocols (F3), and (iii) seldom “close the loop”
by providing insights back to users in a way that can influence
their analysis process (F5). We finally synthesize a framework of
visualization that explicitly integrates metacognition and use it
to stimulate future research directions. We offer this augmented
framework as a next step in advancing the dialogue on metacogni-
tive integration within the visualization community. We hope that
this paper can inspire a research agenda that begins to explicitly
grapple with metacognitive theories and frameworks. We believe
this has potential to transform visualization into a field that focuses
on deep iterative learning and reflection.
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