Recent News

Invited Talk @ PNNL

October 2020. Giving an invited talk for the Community of Interest on Human-Machine Teaming @ Pacific Northwest National Laboratory.

Invited Talk @ CMU & AFRL

May 2020. Gave an invited talk for the Center for Excellence in Human-Machine Teaming, between CMU and AFRL.

Ph.D. Defense

April 2020. Defended my dissertation at Georgia Tech!

Recent Projects

COVID19 Health Equity Dashboard

We present a case study of the COVID-19 Health Equity Dash-board, an open-source web-based interactive data visualization that provides timely, localized, and actionable data of the ongoing COVID-19 pandemic. The dashboard features interactive maps and charts alongside population vulnerability characteristics, allowing for benchmarking county-level outcomes and disparities against the state and nation. While the dashboard faces several public health communication challenges, we continue to investigate and support data dissemination for public health officials’ decision making.

Designing Bias Mitigation Interventions

In this work, we explore the ways in which the design of visualizations may be used to mitigate cognitive biases. We derive a design space comprised of 8 dimensions that can be manipulated to impact a user’s cognitive and analytic processes and describe them through an example hiring scenario. This design space can be used to guide and inform future vis systems that may integrate cognitive processes more closely.

Computationally Characterizing Human Bias in Vis

In this paper, we establish a conceptual framework for considering bias assessment through human-in-the-loop systems and lay the theoretical foundations for bias measurement. We propose six preliminary metrics to systematically detect and quantify bias from user interactions and demonstrate how the metrics might be implemented in an existing visual analytic system, InterAxis.

Value of Visualization

In this work, we create a heuristic-based evaluation methodology to accompany the value equation for assessing interactive visualizations. We refer to the methodology colloquially as ICE-T, based on an anagram of the four value components. Our approach breaks the four components down into guidelines, each of which is made up of a small set of low-level heuristics. Evaluators who have knowledge of visualization design principles then assess the visualization with respect to the heuristics.

Contact

emily.wall@northwestern.edu emily.wall@emory.edu
emilywall.github.io LinkedIn
Google Scholar @embwall